DSP实验5_dsp原理实验
DSP实验5由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“dsp原理实验”。
实验五 FIR数字滤波器的设计(设计性实验)
实验名称:FIR数字滤波器的设计 实验项目性质:编程设计 所属课程名称:数字信号处理 计划学时:4
一、实验目的1.掌握用窗函数法、频率采样法设计FIR滤波器的原理及方法,熟悉响应的计算机编程;
2.熟悉线性相位FIR滤波器的幅频特性和相频特性; 3.了解各种不同窗函数对滤波器性能的影响。
二、预习与参考
2.1窗口法
窗函数法设计线性相位FIR滤波器步骤
确定数字滤波器的性能要求:临界频率{ωk},滤波器单位脉冲响应长度N; 根据性能要求,合理选择单位脉冲响应h(n)的奇偶对称性,从而确定理想频率响应Hd(ejω)的幅频特性和相频特性;
求理想单位脉冲响应hd(n),在实际计算中,可对Hd(ejω)按M(M远大于N)点等距离采样,并对其求IDFT得hM(n),用hM(n)代替hd(n);
选择适当的窗函数w(n),根据h(n)= hd(n)w(n)求所需设计的FIR滤波器单位脉冲响应;
求H(e),分析其幅频特性,若不满足要求,可适当改变窗函数形式或长度N,重复上述设计过程,以得到满意的结果。jω窗函数的傅式变换W(ejω)的主瓣决定了H(ejω)过渡带宽。W(ejω)的旁瓣大小和多少决定了H(ejω)在通带和阻带范围内波动幅度,常用的几种窗函数有:
矩形窗 w(n)=RN(n); Hanning窗
;
Hamming窗;
Blackmen窗;
Kaiser窗。
式中Io(x)为零阶贝塞尔函数。2.2频率采样法
频率采样法是从频域出发,将给定的理想频率响应Hd(ejω)加以等间隔采样
然后以此Hd(k)作为实际FIR数字滤波器的频率特性的采样值H(k),即令
由H(k)通过IDFT可得有限长序列h(n)
将上式代入到Z变换中去可得
其中Φ(ω)是内插函数
三、设计指标
(1)矩形窗设计线性相位低通滤波器(参数自主设定)(2)改用Hanning 窗,设计(1)中的低通滤波器。
四、实验要求(设计要求)
(1)编写窗函数法FIR滤波器设计代码,观察幅频和相位特性的变化,注意长度N变化的影响; 观察并记录窗函数对滤波器幅频特性的影响,比较两种窗的特点;(2)要求所编的程序能正确运行;画出波形,完成并提交实验报告。
五、调试及结果测试 提交带注释的(或给出每个操作所涉及的算法)且运行正确的源程序,说明调试过程中所遇到的问题、解决方法及经验与体会。
六、考核形式
理论课程闭卷考试,实验部分提交实验报告。
七、实验报告要求
1.实验报告必须独立完成,抄袭、复制他人作无效处理: 2.实验报告要求:
(1)要按规定从教学网站下载样板文件格式书写。
(2)实验报告要注明姓名,学号,实验名称,完成日期,联系电话。(3)内容不真实、不认真、不能按时完成的,不记成绩。(4)简要说明设计题目、内容、原理。
3.附滤波器设计代码及要求的图形。对实验结果和实验中的现象进行简练明确的分析并作出结论或评价,对本人在实验全过程中的经验、教训、体会、收获等进行必要的小结。4.报告要求独立完成,篇幅为A4纸不超过5页,突出自己的设计。5.对改进实验内容、安排、方法、设备等的建议和设想,(此部分可选作)。6.不能完成实验报告者,不能参加课程考试。
八、思考题
1.不同窗函数对滤波器性能的影响如何?
2.线性相位FIR滤波器的幅频特性和相频特性如何?
附:实验内容
%N=45,计算并画出矩形框、汉明窗、布莱克曼窗的归一化的幅度谱,并比较各自的主要特点 %(1)矩形窗(Rectangle Window)调用格式:w=boxcar(n),根据长度 n 产生一个矩形窗 w。
%(2)三角窗(Triangular Window)调用格式:w=triang(n),根据长度 n 产生一个三角窗 w。
%(3)汉宁窗(Hanning Window)调用格式:w=hanning(n),根据长度 n 产生一个汉宁窗 w。
%(4)海明窗(Hamming Window)调用格式:w=hamming(n),根据长度 n 产生一个海明窗 w。
%(5)布拉克曼窗(Blackman Window)调用格式:w=blackman(n),根据长度 n 产生一个布拉克曼窗 w。
%(6)恺撒窗(Kaiser Window)调用格式:w=kaiser(n,beta),根据长度 n 和影响窗函数旁瓣的β参数产生一个恺撒窗w 1 clear all %清零
close all %关闭其他程序 N=45;w1=boxcar(N);%矩形窗的调用 w2=hamming(N);%汉明窗的调用
w3=blackman(N);%布莱克曼窗的调用 [h,w]=freqz(w1,N);%矩形窗的幅频特性
figure(1)%第一张图
plot(w/pi,20*log10(abs(h)));%绘制图形
axis([0,1,-80,10]);%横轴0到1,纵轴是-80到10 grid on%画格
xlabel('归一化频率/π');%x轴标签 ylabel('幅度/dB');%y轴标签 title('矩形窗');%标题 figure(2)[h,w]=freqz(w2,N);plot(w/pi,20*log10(abs(h)));axis([0,1,-80,10]);grid on xlabel('归一化频率/π');ylabel('幅度/dB');title('汉明窗');figure(3)[h,w]=freqz(w3,N);plot(w/pi,20*log10(abs(h)));axis([0,1,-150,10]);grid on xlabel('归一化频率/π');ylabel('幅度/dB');title('布莱克曼窗');2 %N=15,带通滤波器的两个通带边界分别是w1=0.3π,w2=0.5π。用汉宁窗设计此线性相位滤波器,观察
%它的实际3dB和20dB带宽。N=45,重复这一设计,观察幅频和相位特性的变化,注意N变化的影响。
close all %关闭其他程序 clear all%清零 N=15;w1=0.3;w2=0.5;w=hanning(N);%汉宁窗的调用 n=0:N-1;alfa=(N-1)/2;%对称轴
h=fir1(N-1,[w1 w2],w);%设计加窗函数的有效滤波器,w1,w2通带的两个范围,w指汉宁窗
[h1,w3]=freqz(h,1);% %汉宁窗的幅频特性 figure(1)%第一张图
subplot(2,1,1);%两张图的第一张图
plot(w3/pi,20*log10(abs(h1)));%绘制图形
grid on;%画格
axis([0,1,-80,10]);;%横轴0到1,纵轴是-80到10 xlabel('归一化频率/π');%x轴标签 ylabel('幅度/dB');%y轴标签
subplot(2,1,2);%两张图的第二张图 plot(w3/pi,angle(h1));grid on;axis([0,1,-4,4]);xlabel('归一化频率/π');ylabel('角度/rad');N=45;w=hanning(N);n=0:N-1;alfa=(N-1)/2;h=fir1(N-1,[w1 w2],w);[h1,w3]=freqz(h,1);figure(2)subplot(2,1,1);plot(w3/pi,20*log10(abs(h1)));grid on;axis([0,1,-80,10]);xlabel('归一化频率/π');ylabel('幅度/dB');subplot(2,1,2);plot(w3/pi,angle(h1));grid on;axis([0,1,-4,4]);xlabel('归一化频率/π');ylabel('角度/rad');3 close all%关闭其他程序 clear all%清零 N=15;w1=0.3;w2=0.5;wn1=boxcar(N);%矩形窗的调用
wn2=blackman(N);%布莱克曼窗的调用
hn1=fir1(N-1,[w1 w2],wn1);%设计加窗函数的有效滤波器,w1,w2通带的两个范围,w指汉宁窗
hn2=fir1(N-1,[w1 w2],wn2);[h1,w3]=freqz(hn1,1);%矩形窗的幅频特性 figure(1)%第一张图%绘制图形
plot(w3/pi,20*log10(abs(h1)));%绘制图形 grid on;%画格
axis([0,1,-80,10]);%横轴0到1,纵轴是-80到10 xlabel('归一化频率/π');%x轴标签 ylabel('幅度/dB');%y轴标签 title('矩形窗,N=15');%标题 [h1,w3]=freqz(hn2,1);figure(2)plot(w3/pi,20*log10(abs(h1)));grid on;axis([0,1,-80,10]);xlabel('归一化频率/π');ylabel('幅度/dB');title('布莱克曼窗,N=15');N=45;wn1=boxcar(N);wn2=blackman(N);hn1=fir1(N-1,[w1 w2],wn1);hn2=fir1(N-1,[w1 w2],wn2);[h1,w3]=freqz(hn1,1);figure(3)plot(w3/pi,20*log10(abs(h1)));grid on;axis([0,1,-80,10]);xlabel('归一化频率/π');ylabel('幅度/dB');title('矩形窗,N=45');[h1,w3]=freqz(hn2,1);figure(4)plot(w3/pi,20*log10(abs(h1)));grid on;axis([0,1,-110,10]);xlabel('归一化频率/π');ylabel('幅度/dB');title('布莱克曼窗,N=45');4:
close all%关闭其他程序 clear all%清零 N=40;%beta=4 for n=1:3 %or循环 if n==1 %if语句 beta=4;elseif n==2 beta=6;else beta=10;end;w=kaiser(N,beta);%凯塞窗的调用
h=fir1(N-1,[0.2 0.4 0.6 0.8],w);%设计加窗函数的有效滤波器,w指汉宁窗 [h1,w1]=freqz(h,1);%凯塞窗的幅频特性 figure(n)%第n张图
subplot(2,1,1);%两张图的第一张图 plot(w1/pi,20*log10(abs(h1)));%绘制图形 grid on;%画格
axis([0,1,-80,10]);%横轴0到1,纵轴是-80到10 xlabel('归一化频率/π');%x轴标签 ylabel('幅度/dB');%y轴标签 if n==1 %if语句
title('beta=4');elseif n==2 title('beta=6');else title('beta=10');end;subplot(2,1,2);plot(w1/pi,angle(h1));grid on;axis([0,1,-4,4]);xlabel('归一化频率/π');ylabel('角度/rad');end 5 clear all%清零
close all%关闭其他程序 N=45;k=0:N-1;for k=0:N-1 %for循环 w=2*pi/N*k;%取样 hk(1,k+1)=0;if((w>=0.2*pi)&&(w=0.6*pi && w=1.2*pi && w=1.6*pi && w
plot(w1/pi,20*log10(abs(h1)));%绘制图形 grid on;%画格
axis([0,1,-80,10]);%横轴0到1,纵轴是-80到10 xlabel('归一化频率/π');%x轴标签 ylabel('幅度/dB');%y轴标签
六、实验分析及心得体会
汇编语言程序设计实验实验一 程序的控制与转移一、实验目的1、掌握条件算符的使用。2、掌握循环操作指令(BNAZ)二、实验设备计算机、DSP实验箱、ccs5000软件。三、实验内容:编......
篇一:dsp实验报告心得体会 tms320f2812x dsp原理及应用技术实验心得体会 1.设置环境时分为软件设置和硬件设置,根据实验的需要设置,这次实验只是 软件仿真,可以不设置硬件,但是......
DSP实验学习心得DSP即为数字信号处理器(Digital Signal Proceing),是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器。它的工作原理是将现实世界的模拟信号转换......
DSP实验学习心得论DSP发展前景DSP 即为数字信号处理器(Digital Signal Proceing),是在模拟信号变换成数 字信号以后进行高速实时处理的专用处理器。它的工作原理是将现实世界......
一 基础实验:CCS 的使用与简单应用程序的调试1.1 实验目的1.熟悉 CCS 集成开发环境,掌握工程的生成方法; 2.熟悉 SEED-DEC5416 实验环境; 3.掌握 CCS 集成开发环境的调试方法; 1.......
