水环境检测和遥感_环境监测与遥感

2020-02-27 其他范文 下载本文

水环境检测和遥感由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“环境监测与遥感”。

摘 要: 遥感技术在水环境监测方面得到了日益广泛的应用,不同含量和类别的水质参数的水体光谱特征不同, 这使得遥感影像能用于水体水质的监测。简要介绍了水体水质监测中遥感应用研究的发展和现状,阐述了水质遥感监测原理与方法、常用的遥感数据和几种主要水质参数的遥感监测进展,讨论了目前遥感在水质监测应用中存在的问题和未来该领域研究的重点。

关 键 词: 遥感;水环境监测;水污染

1.引言

随着工农业生产的发展,江河湖海的各种水体受污染的程度不断加重。它们包括生活废水污染、泥沙等悬浮固体污染、石油污染、重金属污染、富营养化污染和热污染等。它们对人类社会的危害是十分严重的。因此,对这些污染进行监测非常重要。随着遥感技术的进步,遥感监测在水环境等领域的应用已引起环境保护等部门较广泛的重视。国内外通过各方面的努实践认为,各种水体污染在遥感图像上都有不同程度的反映(除有的不清晰外)。因此目前,遥感已成为我们用以监测水环境的依据,而其在水环境监测中的应用也是一先进的技术途径。2.水环境污染

中国环境监测总站提供的资料表明,近10 年来, 我国的水污染成分发生了显著变化:无机污染减少,有机污染上升;工业污染下降,生活污染和面源污染增加。总之目前,我国水环境面临三大问题: ①主要污染物排放量远远超过水环境容量;②江河湖泊普遍遭受污染;③生态用水缺乏,水环境恶化加剧。水污染的现状可以表明,我国水环境污染形势严峻。因此,加大保护水资源的力度,提高水环境监测效率的工作势在必行。

水环境是由地球表层水圈所构成的环境,它包括在一定时间内水的数量、空间分布、运动状态、化学组成、生物种群和水体的物理性质。水环境是一个开放系统,它与土壤-岩石圈、大气圈、生物圈乃至宇宙空间之间存在着物质和能量的交换关系。

水环境的遥感监测多是对地表各种水体进行空间识别、定位、及定量计算面积、体积或模拟水体动态变化。随着遥感基础研究的进展,对水体本身的光谱特性有了深入研究,同时进行许多水质光谱数据测试。对水体的遥测也转换到水体属性特征参数的定量测定,如水深的控制、悬浮泥沙浓度的测定、和绿素含量的测定,以及污染状况的监测等。[1.2] 3.遥感水质监测方法

水体因为各组分及其含量的不同造成水体的吸收和散射的变化,使一定波长范围反射率显著不同,是定量估测内陆水体水质参数的基础。水质遥感监测常用的方法有3种:物理方法、经验方法和半经验方法。

3.1 物理方法

物理方法是以由辐射传输理论提出的上行辐射与水体中光学活性物质特征吸收和后向散射特性之间的关系为基础,利用遥感测量得到的水体反射率反演水体中各组分的特征吸收系数和后向散射系数,并通过水体中各组分浓度与其特征吸收系数、后向散射系数相关联,反演水体中各组分的浓度[3]。在实际的研究工作中,由于物理方法所要求的数据源难以满足,物理方法中的很多模型都只能采用经验的关系,基于物理方法得到的水质参数算法精度并不是很高。

3.2 经验方法

经验方法是伴随着多光谱遥感数据应用于水质监测而发展起来的一种方法。经验方法基于经

验或遥感波段数据和地面实测数据的相关性统计分析,选择最优波段或波段组合数据与地面实测水质参数值通过统计分析得到算法,进而反演水质参数。国内外学者利用经验方法开展了很多内陆水体水质遥感监测,在特定的水域研究中取得了一定的成功[4.5]。但由于水质参数与遥感数据之间的事实相关性不能保证,算法的精度通常不高且具有时间和空间特殊性。3.3 半经验方法

半经验方法是随着高光谱遥感技术在水质监测中的应用发展起来的。半经验方法根据非成像光谱仪或机载成像光谱仪测量的水质参数光谱特征选择估算水质参数的最佳波段或波段组合,然后选用合适的数学方法建立遥感数据和水质参数间的定量经验性算法。半经验方法是自20世纪90年代以来最常用的水质遥感监测方法。国内外很多的学者利用这种方法对湖泊、水库的水质参数如总悬浮物、叶绿素a、黄色物质以及与之相关的可见度、混浊度进行监测和评价,并且得到了较高的监测精度[6.7.8]。

遥感水质监测方法20世纪80年代前以物理方法为主,80~90年代以经验方法为主,90年代后以半经验方法为主,经历了物理方法一经验方法一半经验方法的过程,其发展过程是与遥感技术的发展紧密结合在一起的。经验方法、半经验方法都是通过对航空航天遥感数据、与其(准)同步的地面水质波谱数据、实验室水质分析数据进行适当的统计分析反演水质参数,影响算法精度的主要因素有遥感数据的波段设置和统计分析技术。.水质遥感监测的原理

遥感获取水质参数的方法是通过分析水体吸收和散射太阳辐射能形成的光谱特征与水质指标浓度之间的关系实现的。图1 反映了电磁波与水体相互作用的辐射传输过程:太阳辐射到达气-水界面, 一部分被反射, 而另一部分则折射进入水体内部, 这部分入射光在水面下被多种分子散射和吸收, 由于溶解或悬浮于水中的污染成分和浓度不同, 使水体的颜色、密度、透明度和温度等产生差异, 导致水体反射能量的变化。

5.遥感技术在水污染监测方面的应用

(1)利用红外扫描仪监视石油污染

全球每年排入海洋的石油及其制品高达1000万吨,利用多光谱航片可对海面石油污染进行半定量分析,将彩色航片同步拍照与近红外片做的彩色密度分割图相比较,更精密地判断和解译信息,参照图片画出不同油膜厚度的大致分级图。通过彩色密度分割图像,特别是数字密度分割图,可以更准确地判断油量的分布情况。通过彩色密度分割可把相差零点零几厚度的海面油膜区分出层次来,这有利于用航空遥感对海面油的扩散分布和半定量研究。浓度大的地方是黄色,往外扩散的油膜变薄,呈黄紫混在一起的颜色,再往外扩散的油膜就更薄些呈紫色。通过对污染发生后各天的气象卫星图像的对比分析,确定油膜的漂移方向,计算出其扩散速度和扩散面积。

(2)利用遥感技术监测水体富营养化

浮游植物中的叶绿素对蓝紫光和红橙光有较强的吸收作用,当水体出现富营养化时,我们就可以利用遥感技术推算出水体中的叶绿素分布情况。赤潮区的海水光谱特征是藻类、泥沙和海水的复合光谱,另外有机或无机颗粒物也会吸收入射光,影响水体的透明度。(3)通过遥感技术调查废水污染和泥沙污染

废水的颜色与悬浮物性状千差万别,特征曲线上的反射峰位置和强度也不大一样,可以用多光谱合成图像进行监测。水中悬浮泥沙的浓度和粒径增大,水体反射量也会相应增加,反射峰随之红移,定量判读悬浮泥沙浓度的最佳波段是0.65~0.85微米。

(4)应用红外扫描仪监测水体热污染

应用红外扫描仪记录水体的热辐射能量,真实反映其温度差异。在热红外图像上,热水温度高,辐射能量多,呈浅色调。冷水和冰辐射能量少,呈深色调。热排水口处通常呈白色羽流,利用光学技术和计算机对热图像作密度分割,根据少量的同步实测水温,画出水体等温线。

(5)通过遥感技术分析水域的分布变化和水体沼泽化

水体总体反射率较低,选择1.55~1.75微米波段的多时域影像可以分析水域的分布变化。沼泽化在时域图像上反映为水体面积缩小,从水体向边缘有规律变化,显示出不同程度的植被特征。

6.水体的光谱特征

太阳辐射到达水面后,—部分被水面直接反射回空中形成水面反射光,它的强度与水而状况有关,但除了发生镜面反射的情况之外,一般仅占到入射光的3.5%左右;其余光透射进水中,大部分被水体吸收,部分被水体悬浮泥沙和有机生物散射,构成水体散射光,其中返回水面的部分称后向散射光;部分透过水层,到达水底再反射,构成水底反射光,这部分光与后向散射光一起组成水中光,回到水面再折向空中,所以遥感器接收到的光包括水面反射光和水中光(当然还有天空散射光)(参见图6.1)。一般清水的反射率在可见光区都很低(仅蓝光波段稍高),以后随波长增加而进一步降低,至0.75μm以后的红外波段水几乎成了全吸收体。泥沙含量很高的混浊水,在可见光的反射率明显提高了,提高的幅度随悬浮泥沙的浓度与粒径而增加。图6.2展示了不同泥沙含量水样的光谱反射曲线。从图中可以看比,随着泥沙含量的增高,水体反射率急剧增其最高反射率则有黄绿光区向红光和近红外区移动的趋势。因此,0.6μm-0.7μm左右是定量分析悬浮泥沙的最佳波段之一。

在清澈的水体中,水底的反射光和水中的散射光强度,与水的深度呈良好的负相关。据测定,清洁水对0.47μm~0.55μm左右的光谱散射作用最弱,消散系数最小,即穿透能力最强,故可以认为0.47μm~0.55μm是遥感探测清洁水深的最佳波段。

近年我国部分水域遭受不问程度的污染,其中最普遍的是水体富营养化,促使藻类等水生生物大量繁殖。水生生物体中的叶绿素与藻胆素等会改变纯水在近红外波段的强吸收性,使曲线多少显示出近红外的“陡坡”效应(参见图6.3),其程度则取决于水生生物量的多寡。由此提供了遥感监测海洋赤潮和湖泊富营养化暴发水华的依据。

7.水质遥感存在的问题与发展趋势

7.1 存在的问题:①多数限定于定性研究,或进行已有的航空和卫星遥感数据分析,却很少进行定量分析。②监测精度不高,各种算法以经验、半经验方法为主。③算法具有局部性、地方性和季节性,适用性、可移植性差。④监测的水质参数少,主要集中在悬浮沉积物、叶绿素和透明度、浑浊度等参数。⑤遥感水质监测的波段范围小,多集中于可见光和近红外波段范围,而且光谱分辨率大小不等,尤其是缺乏微波波段表面水质的研究。

7.2 发展趋势

7.2.1 建立遥感监测技术体系。研究利用新型遥感数据进行水质定量监测的关键技术与方法,形成一个标准化的水安全定量遥感监测技术体系,针对不同类型的内陆水体,建立多种水质参数反演算法,实现实验遥感和定量遥感的跨跃,从中获得原始创新性的成果。

7.2.2加强水质遥感基础研究。加深对遥感机理的认识,特别是水质对表层水体的光学和热量特征的影响机理上,以进一步发展基于物理的模型,把水质参数更好的和遥感器获得的光学测量值联系起来;加深目视解译和数字图象处理的研究,提高遥感影象的解译精度;增强高光谱遥感的研究,完善航空成像光谱仪数据处理技术。7.2.3 开展微波波段对水质的遥感监测。常规水质遥感监测波段范围多数选择在可见光或近红外,尤其是缺乏微波波段表面水质的研究情况。将微波波段与可见光或近红外复合可提高对表面水质参数的反演能力。

7.2.4 拓宽遥感水质监测项。现阶段水质遥感局限于某些特定的水质参数,叶绿素、悬浮物及与之相关的水体透明度、浑浊度等参数,对可溶性有机物、COD等参数光谱特征和定量遥感监测研究较少,拓宽遥感监测项是今后的发展趋势之一。应加强其他水质参数的光谱特征研究,以扩大水质参数的定量监测种类,进一步建立不同水质参数的光谱特征数据库。

7.2.5 提高水质遥感监测精度。研究表明利用遥感进行水质参数反演,其反演精度、稳定度、空间可扩展性受遥感波段设置影响较大,利用星载高光谱数据进行水质参数反演,对其上百的波段宽度为10nm左右的连续波段与主要水质参数的波谱响应特性进行研究,确定水质参数诊断性波谱及波段组合,形成构造水质参数遥感模型和反演的核心技术,提高水质监测精度。

7.2.6 扩展水质遥感监测模型空间。系统深入的研究水质组分的内在光学特性,利用高光谱数据和中、低分辨率多光谱数据进行水质遥感定量监测机理研究,进行水质组分的定量提取和组分间混合信息的剥离,消除水质组分间的相互干扰,建立不受时间和地域限制的水质参数反演算法,形成利用中内陆水体水质多光谱遥感监测方法和技术研究低分辨率遥感数据进行大范围、动态监测的遥感定量模型。7.2.7 改进统计分析技术。利用光谱分辨率较低的宽波段遥感数据得到的水质参数算法精度都不是很高,可以借鉴已在地质、生态等领域应用的混合光谱分解技术,人工神经网络分类技术等,充分挖掘水质信息,建立不受时间和地域限制的水质参数反演算法,提高遥感定量监测精度。

7.2.8 综合利用“3S”技术。利用遥感技术视域广,信息更新快的特点,实时、快速地

提取大面积流域及其周边地区的水环境信息及各种变化参数;GPS为所获取的空间目标及属性信息提供实时、快速的空间定位,实现空间与地面实测数据的对应关系;GIS完成庞大的水资源环境信息存储、管理和分析。将“3S”技术在水质遥感监测中综合应用,建立水质遥感监测和评价系统,实现水环境质量信息的准确、动态快速发布,推动国家水安全预警系统建设。

结论

遥感监测的项目增多、分辨率提高、解译性能增强,逐渐占据环境监测网络的重要地位。为了发挥遥感技术在环境保护领域中的作用,结合国内外遥感技术发展的实际情况,深化环境遥感方面的应用研究十分必要。为了提高我国环境保护的科技水平,使我国的环境监测和保护水平再上一个新的台阶,环境保护总的环境遥感需求是:利用卫星遥感技术。随着卫星遥感技术的发展和人们对环境保护的重视,卫星遥感将在环境保护领域中发挥更大的作用。希望卫星遥感在中国环境监测方面尽早步入实现化、业务化阶段,为中国的环境保护工作发挥作用。参考文献: [ 1 ] 施益强,陈崇成,陈玲.遥感技术在环境科学与工程应用中的进展[J ].科技导报,2002 ,12 :25225.[3]lee Z P,Carder K L,Hawes S H,et a1.A model for interpretation of hyperspectral remote—sensing reflectance[J].Appl Opt,1994,33:5721— 5732. [4]Dekker A G,Peters S W M.The use of the Thematic Mapper for the analysis of eutrophic lakes:a case study in the Netherlands[J].Int J Re—mote Sensing,1993,14:799—822. [5]Kloiber S M,Brezonik P L,Olmanson L G,et a1.A procedure for regional lake water clarity aement using Landsat multispectral data[J].Remote Sensing of Environment,2002,82:38—47.

[6]Koponen S,Pnlliainen J.Lake water quality claification with airborne hyperspectral spectrometer and simulated MERIS data[J].Remote Sensing of Environment,2002,79:51—59.

[7]Thiemarm S,Kaufmann H.Determination of Chlorophyl Content and Trephic State of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg lake district,Germany[J].Remote Sensing of Environment,2000,73:227—235.

[8]疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41—45.

遥感在环境检测中的应用

遥感在环境检测中的应用班级:测绘C111 姓名:郑广震 学号:117568 遥感在环境检测中的应用摘要:现阶段,由于多方面因素的影响,使得我国的城市环境污染日益严重,各类突发性环境污染事......

遥感实习日志和总结

实习日志实验一今天是实习的第一天,我先看了实习安排:主要对高光谱分析、镶嵌、配准、非监督分类和监督分类五个方面进行了操作,整个过程是借鉴了一些参考资料以及和同学的一些......

土木工程与水资源和水环境

第三章 土木工程与水资源和水环境 第一节水资源与水资源短缺一、水资源的概念地球上的水资源,从广义上说是指水圈内水量的总体。其中海水占总量的97.3%,海水含盐量高,难以被人......

遥感学院

遥感学院2006—2007年度先进个人评比办法为了庆祝遥感学院成立一周年,向各界展示遥感学子的风采,培养我院学生在德智体美等方面全面发展,鼓励学生在思想政治表现、专业学习、学......

卫星遥感

卫星遥感技术气象卫星的估算应用比较广泛。前面说过,气象卫星还能够对农作物长势、病虫害及冻害进行监测,但这只是一方面。气象卫星能够对灾害面积进行估计,对农作物收成作出估......

《水环境检测和遥感.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
水环境检测和遥感
点击下载文档
相关专题 环境监测与遥感 遥感 水环境 环境监测与遥感 遥感 水环境
[其他范文]相关推荐
[其他范文]热门文章
下载全文