长江水道集装箱运输航线网络优化_集装箱航线网络优化

2020-02-27 其他范文 下载本文

长江水道集装箱运输航线网络优化由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“集装箱航线网络优化”。

长江水道集装箱运输航线网络优化

摘要:基于长江水道各航段的适航特征和沿岸港口间OD集装箱运输需求,构建整数规划模型,以所有集装箱运输总成本最小为目标,优化长江水道上集装箱航线网络,确定各航线靠港、靠泊顺序及所用船舶的类型与数量。优化时,首先确定适合长江航道的主要船型,其次,结合各段航道适航特征,针对可使用的各种船型,设定各航段的通行阻抗函数; 然后,设计基于 Frank-Wolf 法的遗传算法进行求解。优化得到的集装箱航线网络呈现―大船在中间,小船在两边‖的形态,与目前遵循的―小船走上游,大船走中下游‖的船舶配置原则有所不同。

1.引言

长江是我国内河运输的“黄金通道”,是中西部地区与世界实现经济交流的动脉,同时也是东西部经济互补的桥梁。长江水系集装箱运输自1976年以来经历了试验、起步和发展三个阶段,目前航线已由单一的内贸航线发展到国际航线、内支线、国内航线,集装箱箱型由 5t箱变为20英尺和40英尺国际标准箱,运输方式由顶推船队为主发展到以自航船为主。2002年,长江水系集装箱吞吐量为138万TEU,主要港口集装箱吞吐量为126万TEU。集装箱运输已成为长江货物运输的新经济增长点。

目前,大约有20个航运公司主要从事集装箱内河运输,比如,中远集装箱运输公司,中海集装箱运输公司、中外运集装箱运输公司、上海港口航运和驳船运输公司,上海浦海航运有限公司和民生航运公司。在长江水系有100多条集装箱航线,包括长江干线港口间、长江港口至沿海港口的国内航线以及开往邻近国家和地区的近洋航线,及其长江三角洲地区的无锡—上海、常州—上海、杭州—上海、嘉兴—上海、湖州—上海的集装箱航线。

由《长江干线航道发展规划》可知,上起云南水富港、下至上海长江口的长江航道将得到加深。水富至宜宾河段,将由1.8m加深至2.7m,全年可通航由 1000t级驳船组成的船队;城陵矶至武汉,加深至3.7m,可通航由3500t驳船组成的万吨级船队;武汉至铜陵河段,通航由2000~50000t 级驳船组成的2~4万t级船队,可通航5000t级海船;铜陵至南京,加深至6m,可通航5000~10000t级海轮;南京以下航道加深至12m以上,可通航5万t级以上海轮;浏河口至长江口河段可通航第五代以上超大型集装箱船。上述长江主要通道如图1所示。

图1 长江主要通道 众所周知,长江上各港口间适航船舶的差异为沿长江设置多种集装箱航线,构建沿江的集装箱水运网络提供了条件。根据交通需求和水道的条件,运营商可以设置几个集装箱运输方案。运营者可以结合需求和航道情况,用适用性强的小型船舶实施点对点运输;或在中下游用大型船舶,在中上游用小型船舶,实施干支线分离运输。各种航线网络效率和效益随需求和航道变化而异,所以有必要针对长江航道进行集装箱运输航线网络设计。

2.文献综述

有关水上航线设计的研究很多,但相关研究主要集中在海运领域,早期的代表性研究均为海运船队规划问题。随着班轮业的发展,航线所涉及的港口不断增加,航线结构逐渐成为决定运营成本的关键。

因此,研究者在船队规划的同时,开始关注船舶定线问题。Rana等用整数规划模型同时优化船队规模和班轮路线;文献以航线收益最大为目标,用集合划分模型优化船队规划和船舶定线Agarwal等总结了班轮船舶调度、航线设计和船队规划等问题,并基于时空网络建立混合整数规划模型。

另外,部分学者还研究了班轮航线优化与仓储、空箱调运、时间约束、运输需求季节性波动等的相互影响。Hsu等从承运人的角度,以最小运输成本和库存成本之和为目标,建立双目标模型优化班轮航线、船队规模、发班频率。Shintani等建立双层模型,同时处理航线优化和空箱调度问题。Matthew等在有时间约束的条件下,设计集装箱轴辐式航线网络。Meng等研究了单一集装箱班轮公司在运输需求不确定时的短期班轮船队规划问题。

只有少数学者针对各自国家的内河集装箱运输进行研究,且多是关于船型选择、船型标准化、内河运输与海港衔接等的研究。刘建峰等针对早期长江水道的航行条件,从经济性上研究上游港口实施江海直达运输时,近洋航线(到日本神户、横滨等港口)的最佳船型。在不考虑航线网络和OD运输量的情况下,通过装载率不同所导致的单箱运输成本变化来确定合理的船型。

贾瑞华等研究在长江上游运输集装箱时,水运方式与陆运方式的优劣,基于 AHP法构建评价体系,在宏观层面上分析运输经济性。该研究不涉及航道和航线等微观层面细节,只研究陆路通道和水路通道的经济性。

罗洪波等详细分析长江通航情况,为重庆至洋山港间运输设置了五种方案:直达、芦潮中转、武汉中转、南京中转、外高桥中转,并用评价标准进行测试。该研究的缺点是没有考虑货流量和沿线其他港口的货物。

与之类似,钟华杰等研究了重庆、武汉、长沙、南京、张家港等地至洋山的集装箱运输方案,预先设定了 18 种可能的航线方案,然后确定各港口到洋山港的最佳运输方案。这些研究的特点是不考虑港口间集装箱流量,假设每种船型对应一个单箱运输成本,然后确定运输方案。

上述研究的共同特点是,他们都没有考虑集装箱港口之间的OD货流,并认为一种类型的船都有一个特定单位集装箱运输成本,然后评估其他港口到洋山港班轮方案。

Taylor等研究了美国俄亥俄河的驳船与动力船的指派问题,作者给出了一个基于仿真的调度系统,用以辅助决策驳船指派和动力船分配问题。Jonkeren等研究了气候所导致的莱茵河水位变化对航运成本的影响,以及最终引起的水运份额的变化。他们利用NODUS软件分析货物在一个范围广泛的综合运输网络中的路径选择问题,关注低水位对水运分担率的影响,用宏观网络规划软件研究OD货流在虚拟化的综合运输网络上的路径选择问题,而非设计内河航运的运输网络。总之,内河集装箱运输的相关研究很少涉及航线网络优化与航线配船,仅有的一些研究不适

用于各航段通航条件不同、水文状况复杂的内陆河道运输系统。因此,本文针对长江水道提出考虑航道水深限制和货主运输路径选择行为的集装箱运输航线网络优化与船队配置模型(COM),以航线运营总成本最小为目标,确定各航线的靠泊港口、靠泊顺序、船型与船舶数量。为求解模型,基于Frank-Wolf原理设计遗传算法(GA)。

本文的组织结构如下:第三节介绍了问题描述和提出了一些建立模型时应该处理的关键问题。第四部分描述了路网规划和航线配船模型(NFDM)。第五节设计了相应算法。第六节举例说明了计算结果。最后, 第七节为研究总结。

3.问题描述

3.1航线方案的表述方法

为了设置航线配船模型,用数学方法来描述班轮航线计划和由路线方案组成的运输路网应该被创建,该方法应该从各方面来考虑内河上所有班轮航线的结构特点。在海洋运输中,班轮航线可拆分为去程子航线和回程子航线,因此确定海上班轮航线就是确定去程子航线和回程子航线的靠泊港口和靠泊顺序。但是,长江航道结构单一,没有可替代路径,各港口沿水道顺序排列,去程子航线由上游至下游顺序靠泊,回程子航线由下游至上游顺序靠泊。因此优化长江上的班轮航线时,只确定各子航线的靠泊港即可。

假设图2显示了长江沿岸港口的位置,从上游到下游,第一个港口是港口1和最后一个港口是港口N。设某航线的去程子航线为:港2—港3—港l—港 N,回程航线为:港N —港N -1—港l —港2,由此可确定一个如图 3 所示的航线。

图2 港口分布示意图

图3 航线组成由图3可知,若某港为挂靠港,则其在航线中的角色可能是:(1)去程子航线的起始港(如港2);或(2)去程子航线的中途靠泊港(如港3);或(3)回程子航线的中途靠泊港(如港 N - 1);或(4)去程和回程子航线均挂靠的中途港(如港 l);或(5)回程子航线的起始港(如港 N)。因此,可以用 0 - 1 变量 xitk来表述港口在航线中的角色,其中i为港口编号,t∈[1,5]为港口角色编号,k∈[1,K]为航线编号,K为预先设定的航线数量。若航线k挂靠i港,而i港在航线k中的角色为t,则xitk= 1,否则为0。另外,用 xi0k表示港口i是否被航线k挂靠,若是则xi0k= 1,否则为0。变量 xitk与xi0k之间的关系为:

xioktxitk

(1)

式(1)用于确保若港口i是挂靠港时,港口i在航线中只扮演一种角色; 而若港口i不是挂靠港时,xitk的取值则为0。

xiii1k

1(2)(3)xi5k1式(2)、(3)表明在一个航线中去程子航线和回程子航线都有且只有一个起始港。

xn1k(i1xi5k)0,2nMxn5kn(4)

(5)

式(4)表明,航线中角色 1 的港口的上游不可能有角色 5 的港口。同样,式(5)表明角色 5 的港口的下游不可能有角色 1 的港口。in1Mxi1k0,1nM1xn1kxn5k(7)

式(6)表明,航线中角色1的港口的上游不可能有挂靠港。而式(7)表明角色5 的港口的下游不可能有挂靠港。给定一组满足约束条件的 xi1k与xi0k便可确定in1n1i1Mxiok0,2nM(6)

xi0k0,1nM1一个航线方案。例如,若 x20k= x30k=xi'0k= x(N-1)0k= xN0k= 1,而其他 xi0k= 0,则航线k的靠泊港口为2、3、l、N -

1、N;同时,若 x21k= x32k= xl4k= x(N-1)2k= xN5k= 1,而其他 xitk= 0,则港口 1 与港口 N 分别为去程子航线与回程子航线的起始港,港口 2 为去程子航线的中途靠泊港,港口l为去程与回程子航线均挂靠的中途港,而港口N - 1 仅是回程子航线的挂靠港。这里设 X =(xitk,t ∈[0,5],i ∈ M,k ∈[1,K]),zijk表示航线k中是否有港口 i 至港口j的航段。zijk与X的关系可表示如下:

zijkzijkxttitkxi3kxttjtkxj3k,ijxj2k,ij

(8)

(9)xitkxi2kxjtkzijk0,ij(10)

式(8)表示航线k的去程子航线的航段,式(9)表示回程子航线的航段。如果用A(X)= {(i,j)k| zijk= 1,i,j ∈ [1,K]},其中(i,j)k为网络中航线k的港口i至港口j的有向航段。例如,在图 3 所示的由两条航线构成的网络中,(1,3)1表示航线 k = 1 由港口1 至港口3 的有向航段,(2,3)2表示航线 k = 2 由港口 2 至港口 3的有向航段。至此,得到表示靠泊港口选择、靠泊顺序等航线结构的数学表述方法。

图4 航线网络的描述方法

3.2.集装箱货流分配

根据上述描述方法,所有的航线都可以用数学结构来表达。然而,要评价航线的优劣,需要估算集装箱在航线网络上的分布情况。在水路运输网络中,托运人通常会选择综合运输成本(运输时间与费用的加权和)最低的运输路径运输货物,其行为符合UE原理,因此可以用UE分配模型计算各水路路段的集装箱流量。此时,求解UE模型的关键是设定路段的阻抗函数。借鉴Meng等的研究给出如下阻抗函数:

S(i,j)kg(i,j)k(s(i,j)k)c0(i,j)kt0(i,j)k11()2(i,j)kA(X)fekqh1k3(11)

其中: c0(i,j)k、t0(i,j)k、s(i,j)k分别为路段(i,j)k的运价、自由流时间与流量;h1k、feqk分别为k航线上船舶的运力与班期密度;FEQ = { feqk| k ∈[1,K]} ;为时间价值;α、α、α为待定参数。基于上述阻抗函数,来计算用户平衡123(s(i,j)k,(i,j)kA(X))状态下,各路段的集装箱流量S,可以用变分不等式:

g(i,j)k(S(i,j)k(S(i,j)kS(i,j)k)0(i,j)kA(X)for any S(X),S(s(i,j)k,(i,j)kA(K))

(12)

其中,Ω(X)为路段上集装箱流量的集合。

4.优化模型

4.1.假设条件

除前面假设外再增加假设:(1)一个班轮航线仅用一种船型;(2)船舶在各港口的在港时间相同;(3)必要时集装箱可在不同班轮航线之间转运;(4)同一航线的平均航速相同;(5)决策周期为7天。

4.2.模型结构

基于上述分析和假设,构建整数规划模型,其解析表达式如下:

minwk(cgkcjk)

(13)

式(13)为最小化水运网络的总运输成本。其中:cgk为航线k的运营成本;cfk为航线k的燃油成本。约束条件除包括式(1)~(12)外,还包括:tgkijzijkDisijtxitkxi4ktp24vki(14)

式(14)用于计算航线 k 的全程航行时间。其中:Disij为港i至港j的航行距离;vk为航线k的平均航速;tp为船舶在港停泊时间。

h2kfeqktgk7(15)

cgkh3kh2k7(16)cfkh4kh2k7(17)式(15)用于计算航线k所需的船舶数量h2k,其中,feqk为航线k的班期密度。式(16)用于计算cgk,其中,h3k为航线k上船舶日租金。式(16)用于计算 cfk,其中,h4k为航线k上船舶的日燃油消耗。

zijkh1kSLij

(18)

式(18)为航道水深约束,其中,SLij为港口i至港口j航段水深。

qrspfprs,ro,sD(19)

(20)s(i,j)kfprsrs(i,j)k,p,(i,j)kA(X)rspS(i,j)kfeqkh1k

(21)feqk

1(22)

式(19)、(20)给出路段集装箱量与港口间OD 量间的关系。其中: O 为起运港集合;D为目的港集合;qrs为由港r∈O至s∈N的OD量;非负实数frsp表示水路网络中连接OD对 r - s 的路径p上的流量;σrs(i,j)k,p为0 - 1 变量,当 OD 对 r - s 间的路径 p 经过路段(i,j)k时取1,否则为0。式(20)确保所有货运需求均获得充足的运力。式(22)用于保证各航线班期密度至少为每周 1 班。

5.模型的解决方案

5.1.算法设计

上述模型是一个带有平衡约束的整数规划问题,加之要考虑航线结构、港口选择以及航道水深限制等,因此难以精确求解。为此设计一种嵌入Frank-Wolf 法的遗传算法(FWGA)。运行步骤如下: 步骤1(初始化)令 n = 0,生成初始种群 Pn= {(X,FEQ)v|v = 1,„,λ};其中,(X,FEQ)v表示遗传算法的一个个体,包含两部分:航线结构信息 X 与航线班期频率 FEQ;λ为种群规模;

步骤2(计算个体的适应度值)步骤2.1根据已知的(X,FEQ)v构建水运网络Gv;步骤2.2采用 Frank-Wolf 法计算网络Gv的用户平衡状态,获得各路段的集装箱流量:sv=(s(i,j)k,(i,j)k∈ A(X)); 步骤2.3计算个体 v 的适应度值:

1fitv0.01cgkcfkMmax0,Si,jkfeqkh1ki,jkAXk1,kk1,k 其中: fitv为个体 v 的适应度值;M 为一个足够大的正数;max(.)为取大函数。

步骤3(判断算法是否收敛)检查当前种群的适应度最大值与平均值的差是否小于预设的μ,是则执行步骤 4,否则终止算法;

步骤4(执行选择、交叉和变异操作)令n = n + 1,实施交叉、变异和选择操作,获得新个体Pn,然后回到步骤 1。

5.2编码方法

编码由若干子编码构成,子编码个数取决于预先设定的航线数K。图5为一个K = 2 时的随机编码,由子编码k = 1和子编码 k = 2 组成。其中,每个子编码均由5部分构成。如图6所示。

Part 1表示靠泊港口,同时确定去 / 回程子航线的起始港。例如,0 1 1 1 1 表示去程子航线的起始港为港 2,回程子航线的起始港为港 5,该航线还挂靠港口 3 与港口 4。基于Part 1 确定靠泊港口与起始港后,便可根据 Part 2 —Part 4 来确定各挂靠港在航线中的角色。

具体地: 若港口 i 被选为靠泊港,且不是起始港,则 Part 2 的第 i 号基因的作用便是判断该港是否是仅隶属于去程子航线的港口,若是则 Part 2 的第 i 号基因位的值为 1,否者为0。例如,在图6中靠泊港3既不是去程子航线的起始港也不是回程子航线的起始港,且Part2的第3基因位的值为1,由此可知港口 3 仅隶属于去程子航线。Part 3 与 Part 4 分别用于确定仅隶属于单程子航线和同时隶属于两个子航程的港口,其判定方法与 Part2相同。

图5 编码方法

图6 子编码构成Part5用于确定航线方案k的班期频率,是二进制编码,位数等于预先设定的备选班期频率. 若备选班期频率为每周1、2、3、4 班,Part 5 便是一个2 位的二进制数,Part 5 =(0 0)对应每周 1 班;Part5 =(0 1)对应每周 2 班;Part 5 =(1 1)对应每周 3班;Part 5 =(1 0)对应每周 4 班。

这种编码方法可方便地表示任何一个航线方案与班期频率的组合(X,FEQ)v. 例如,根据子编码 k = 1 可得到图 7a 所示的航线 a,根据子编码 k = 2 可得到图 7b 所示的航线 b,两者组合可表述图 7c 所示的航线网络c。

图7 子航线的组合图8 长江流域港口位置

6.数值分析

6.1 数据收集

选择长江沿线港口中集装箱 OD 量较大的 10个港口,从上游至下游依次为: 泸州(LZ)、重庆(CQ)、荆州(JZ)、城陵矶(CLJ)、武汉(WH)、九江(JJ)、南京(NJ)、张家港(ZKG)、南通(NT)、上海(SH).图8显示了长江流域港口间的位置。表 1 为港口间 OD 集装箱流量,各港间运价取自实际公布的运价表。各港口间在枯水期和丰水期可通行的最大船舶吨位如表 2 所示。

考虑到长江上、中、下游航段差异,这里选取最具代表性的三种船型: 1000MT、3000MT 和5000MT。表 3 为三种船舶的燃油消耗量、运行速度、满载吃水、日租金和燃油成本。参考长江集装箱班轮航线的现状特征,假定优化的航线网络由三条航线构成,其中每条航线上只使用一种船型。另外假设班轮频率为每周 1 班 ~ 每周 8 班。

6.2 计算方法

设初始种群由100个个体构成,个体编码包括3个子编码,其中子编码的Part 1 ~ Part 4拥有10个基因位(备选港口有10个),Part 5 拥有3个基因位(航班频率有8种可能)。最大迭代次数为 200,交叉率设定为 0.92,变异率为 0.01。算法终止条件为最大适应度与平均适应度间的差≤0.002。

表1集装箱港口之间的OD流(TEU /周)

表2港口集装箱吞吐量的运输价格(20TUE/人民币)

表3船舶相关数据

表4枯水期港口之间航道的通航船舶(ton)

表5 丰水期港口之间航道的通航船舶(ton)

图9 枯水期收敛情况

采用 C + + 语言编写求解程序,并在Duo Core 2. 53 计算机上运行,分别就枯水期和丰水期,针对不同船型进行计算。数据在表3-5用于不同的船舶类型。图9和图10为计算收敛情况。

6.3结果分析

表6和表7分别为枯水期与丰水期的航线网络。图11、12分别为枯水期、丰水期航线覆盖区域。枯水期航线网络的最低运营成本为5658 346 元/周,丰水期最低运营成本为3833 551 元/周。

实际上,目前班轮公司一直遵循着“小船走上游,大船走中下游”的原则。但是,实验结果表明,不论是枯水期还是丰水期,航线网络均呈现“大船在中间,小船在两边”的形态。这是因为下游水道的航程长,如果在中下游同时用大型船舶,为保班期(每周至少1班)就必须增加大型船舶的数量,结果导致运营成本增加和运力浪费。

图10 汛期收敛情况

表6 旱期班轮航线网络结构

表7 汛期班轮航线网络结构

因此,合理的方案是在下游航段使用中型船舶,而非大型船舶。这样做既能满足运输的要求,又能提高船舶利用率,降低航线的运营成本。因此,在这种情况下,当与陆路运输相比航道可能比较强。因为水运输成本减少,同时由于在相同的码头边船只之间转船运输时间可能很难改变。此外,计算结果进一步表明,该运作模式为“大船在中间,小船在两边”,并非严格按照上游、中游和下游的边界。如图11和图12所示,由于在枯水期5000MT型船只在中游航行的路线会变短。而且,1000MT 型船舶的运营区域相应减小。结果表明,在枯水期,使用14艘小型船只,而在丰水期只使用8艘小型船只。因此,在枯水期的运输成本更大。

图11在枯水期的运输路线

图12在丰水期的运输路线

7.结论

本文探讨了长江水道集装箱班轮航线网络设计与船队配置问题,开发了基于 UE 原理的优化模型,并设计启发算法。与传统的在通航能力大的流域使用大型船的做法不同,本文计算结果显示,应该在长江中游使用大型船,在下游使用中型船,在上游使用小型船。通过这样做,可以满足集装箱运输的需求以及操作总成本最小化。

在沿河的港口之间基于完整的OD矩阵得到上述结果。它表明,当一个操作员根据计划做运输业务,运输成本可以大大降低。同时,操作员可以优化船舶的航行时间,减少转运时间。随着所节约成本的增大和时间增量的减少,航道的竞争力变得更强壮从陆运模式去吸引更多的集装箱。结果,长江沿岸地区的交通可能变得更加环保。参考文献

[1]Agarwal, R., and Ö.Ergun.2008.―Ship Scheduling and Network Design for Cargo Routing in LinerShipping.‖ Transportation Science 42(2): 175–196.[2]Cho, S.-C., and A.N.Perakis.1996.―Optimal Liner Fleet Routeing Strategies.‖ Maritime Policyand Management 23(3): 249–259.[3]Claeens, E.M.1987.―Optimization Procedures in Maritime Fleet Management.‖ Maritime Policyand Management 14(1): 27–48.[5]Fagerholt, K.1999.―Optimal Fleet Design in a Ship Routing Problem.‖ International Transactionsin Operational Research 6(5): 453–464.[6]Hsu, C., and Y.Hsieh.2007.―Routing, Ship Size, and Sailing Frequency Decision-Making for aMaritime Hub-and-Spoke Container Network.‖ Mathematical and Computer Modelling 45(7):899–916.[7]Jaramillo, D.I., and A.N.Perakis.1991.―Fleet Deployment Optimization for Liner Shipping Part 2.Implementation and Results.‖ Maritime Policy and Management 18(4): 235–262.[8]Jia, R.H., Y.Zhang, and B.Yang.2006.―Project Optimization of Container Transport for the UpperReach of the Yangtze River.‖ Journal of Waterway and Harbor 27(2): 127–130.[9]Jonkeren, O., B.Jourquin, and P.Rietveld.2011.―Modal-Split Effects of Climate Change: TheEffect of Low Water Levels on the Competitive Position of Inland Waterway Transport in theRiver Rhine Area.‖ Transportation Research Part A: Policy and Practice 45(10): 1007–1019.[10]Karlaftis, M.G., K.Kepaptsoglou, and E.Sambracos.2009.―Containership Routing with TimeDeadlines and Simultaneous Deliveries and Pick-Ups.‖ Transportation Research Part E:Logistics and Transportation Review 45(1): 210–221.[11]Lane, D.E., T.D.Heaver, and D.Uyeno.1987.―Planning and Scheduling for Efficiency in LinerShipping.‖ Maritime Policy and Management 14(2): 109–125.[12]Liu, J., and S.Qin.1994.―Analysis of Container Ship Types and Transportation from the YangtzeRiver to Abroad.‖ Journal of East China Shipbuilding Institute 8(4): 21–29.[13]Luo, H.B., and J.Y.Sun.2006.―Study on Container Transportation Modes from Chongqing toShanghai.‖ Research on Waterborne Transportation 2: 18–22.[14]Meng, Q., and S.Wang.2011a.―Liner Shipping Service Network Design with Empty ContainerRepositioning.‖ Transportation Research Part E: Logistics and Transportation Review 47(5):695–708.[15]Meng, Q., and X.Wang.2011b.―Intermodal Hub-and-Spoke Network Design: IncorporatingMultiple Stakeholders and Multi-Type Containers.‖ Transportation Research Part B: Methodological 45(4): 724–742.[16]Perakis, A.N., and D.I.Jaramillo.1991.―Fleet Deployment Optimization for Liner Shipping Part 1.Background, Problem Formulation and Solution Approaches.‖ Maritime Policy andManagement 18(3): 183–200.[17]Powell, B.J., and A.N.Perkins.1997.―Fleet Deployment Optimization for Liner Shipping: AnInteger Programming Model.‖ Maritime Policy and Management 24(2):183–192.[18]Rana, K., and R.G.Vickson.1988.―A Model and Solution Algorithm for Optimal Routing of aTime-Chartered Containership.‖ Transportation Science 22(2): 83–95.[19]Rana, K., and R.G.Vickson.1991.―Routing Container Ships Using Lagrangean Relaxation andDecomposition.‖ Transportation Science 25(3): 201–214.[20]Sambracos, E., J.A.Paravantis, C.D.Tarantilis, and C.T.Kiranoudis.2004.―Dispatching of SmallContainers via Coastal Freight Liners: The Case of the Aegean Sea.‖ European Journal ofOperational Research 152(2): 365–381.[21]Shintani, K., A.Imai, E.Nishimura, and S.Papadimitriou.2007.―The Container Shipping NetworkDesign Problem with Empty Container Repositioning.‖ Transportation Research Part E:Logistics and Transportation Review 43(1): 39–59.[22]Taylor, G.D., T.C.Whyte, G.W.DePuy, and D.J.Drosos.2005.―A Simulation-Based SoftwareSystem for Barge Dispatching and Boat Aignment in Inland Waterways.‖ SimulationModelling Practice and Theory 13(7): 550–565.[23]Wardrop, J.G.1952.―Some Theoretical Aspects of Road Traffic Research.‖ Proceeding InstitutionCivil Engineers Part II 1(2): 325–378.[24]Yamada, T., B.F.Ru, J.Castro, and E.Taniguchi.2009.―Designing Multimodal Freight TransportNetworks: A Heuristic Approach and Applications.‖ Transportation Science 43(2): 129–143.[25]Zhong, H., and C.Cheng.2008.―Study on Container Transportation Modes of Ports along theYangtze River.‖ Containerization 8: 9–12.

国际集装箱运输船舶航线

国际集装箱运输第三章 集装箱船舶与航线教材《国际集装箱货物多式联运组织与管理》,参考书《国际集装箱运输与多式联运》第三章 集装箱船舶与航线第一节 集装箱船舶及配积载......

亚欧航线集装箱运输市场[优秀]

亚欧航线集装箱运输市场运价分析摘要:从亚洲各港口经马六甲海峡穿过印度洋和苏伊士运河抵达欧洲各国港口的航线,称之为亚欧航线。亚欧航线是联结欧洲众多的发达国家群与经济增......

云南航线网络

云南省航线网络特点 以及对我国航线网络规划的启示高玉洁 090542111云南省航线网络特点以及对我国航线网络规划的启示摘要:自1922年云南民航事业开始,经过长期的发展,云南民航......

集装箱运输方案设计

方案在各个领域都有着重要的作用,无论是在个人生活中还是在组织管理中,都扮演着至关重要的角色。方案对于我们的帮助很大,所以我们要好好写一篇方案。以下是我给大家收集整理的......

集装箱运输需求预测

2010年集装箱运输需求预测【相关阅读】 与2009年上半年低迷不振的市场行情形成鲜明对比的,是下半年集装箱船舶运力市场的明显反弹与2009年上半年低迷不振的市场行情形成鲜明......

《长江水道集装箱运输航线网络优化.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
长江水道集装箱运输航线网络优化
点击下载文档
相关专题 集装箱航线网络优化 长江 水道 航线 集装箱航线网络优化 长江 水道 航线
[其他范文]相关推荐
[其他范文]热门文章
下载全文