中考数学试题分类考点24平行四边形 答案_中考数学分类试题分析

2020-02-28 其他范文 下载本文

中考数学试题分类考点24平行四边形 答案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“中考数学分类试题分析”。

2018中考数学试题分类汇编:考点24 平行四边形

一.选择题(共9小题)

1.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°. 故选:B.

2.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.

3.【解答】解:∵AC=4cm,若△ADC的周长为13cm,∴AD+DC=13﹣4=9(cm). 又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm. 故选:D.

4.【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.

5.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.

6.【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.

∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.

7.【解答】解:正确选项是D.

理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD是平行四边形. 故选:D.

8.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、③④. 故选:B.

9.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可; A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意; B、若AE=CF,则无法判断OE=OE,故本选项符合题意;

C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;

D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意; 故选:B.

二.填空题(共6小题)

10.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD的周长=5+4+5=14,故答案为14.

11.【解答】解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=6,故答案为:6.

12.【解答】解:∵ABCD是平行四边形,∴OA=OC,∵OM⊥AC,∴AM=MC.

∴△CDM的周长=AD+CD=8,∴平行四边形ABCD的周长是2×8=16. 故答案为16.

13.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.

14.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC=∴OC=4,∴OB=∴BD=2OB=4故答案为:4 .

=

2,=8,15.【解答】解:过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2; 当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.

三.解答题(共12小题)

16.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,∴△AOE≌△COF(ASA),∴OE=OF.

17.【解答】证明:(1)∵AE=CF,∴AE+EF=CF+FE,即AF=CE. 又ABCD是平行四边形,∴AD=CB,AD∥BC. ∴∠DAF=∠BCE. 在△ADF与△CBE中,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC. ∴DF∥EB.

18.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.

19.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.

(2)解:结论:四边形ACDF是矩形. 理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.

20.【解答】解:在▱ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,∴△ABF≌△CDE(SAS)∴∠ABF=∠CDE 21.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF.

22.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE ∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.

∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.

23.【解答】解:(1)①④为论断时: ∵AD∥BC,∴∠DAC=∠BCA,∠ADB=∠DBC. 又∵OA=OC,∴△AOD≌△COB. ∴AD=BC.

∴四边形ABCD为平行四边形.

(2)②④为论断时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.

24.【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又 EF∥DC,∴四边形CDEF是平行四边形;

(2)解:∵四边形CDEF是平行四边形; ∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,25.【解答】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.

在△ABC和△DEF中,∴△ABC≌△DEF(ASA),∴AB=DE. 又∵AB∥DE,∴四边形ABED是平行四边形.

26.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,∴BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.

27.【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.

在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°. ∵E为AB的中点,∴AE=BE. 又∵∠AEF=∠BEC,∴△AEF≌△BEC.

在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB. ∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°. 又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°. 又∵∠D=60°,∴∠AFE=∠D=60°. ∴FC∥BD.

又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC. ∴四边形BCFD是平行四边形.

(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=∴S平行四边形BCFD=3×BC=3=9,.

中考数学试题分类考点24平行四边形

2018中考数学试题分类汇编:考点24平行四边形一.选择题(共9小题)1.(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50......

中考数学试题分类考点24平行四边形Word版含解析

文档来源于网络,版权属原作者所有,如有侵权请联系删除。2018中考数学试题分类汇编:考点24平行四边形一.选择题(共9小题)1.(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD......

中考数学试题分类考点33命题与证明

2018中考数学试题分类汇编:考点33 命题与证明一.选择题(共19小题) 1.(2018•包头)已知下列命题: ①若a>b,则a>b;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在......

中考数学试题分类07_一元一次方程

一元一次方程一、选择题1.(2010 四川泸州)若x=2是关于x的方程2x+3m-1=0的解,则m的值为()1A.-1B.0C.1D. 3二、填空题1.(2010江苏宿迁)已知5是关于x的方程3x2a7的解,则a的值为▲.【答案】42.(20......

中考英语试题考点分类

刀豆文库小编为你整合推荐5篇中考英语试题考点分类,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《中考数学试题分类考点24平行四边形 答案.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
中考数学试题分类考点24平行四边形 答案
点击下载文档
相关专题 中考数学分类试题分析 考点 中考 数学试题 中考数学分类试题分析 考点 中考 数学试题
[其他范文]相关推荐
[其他范文]热门文章
下载全文