微生物燃料电池讲稿_微生物燃料电池讲义
微生物燃料电池讲稿由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“微生物燃料电池讲义”。
大家好,大家一想到细菌可能会觉得不舒服,但是随着生物技术的发展表明,这些小家伙对我们是分外友好的,比如我今天展示的主题是关于微生物发电方面,即利用微生物将有机物中的化学燃料能直接转化成电能。大量研究证明,微生物发电是很有潜力的。
这是我今天展示的四个部分,首先是细菌发电的技术原理,(以电池为例)
一种利用微生物将有机物中的化学能直接转化成电能的装置。其基本工作原理是:在阳极室厌氧环境下,有机物在微生物作用下分解并释放出电子和质子,电子依靠合适的电子传递介体在生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流,而质子通过质子交换膜传递到阴极,氧化剂(一般为氧气)在阴极得到电子被还原与质子结合成水。
与其他类型燃料电池类似,微生物燃料电池的基本结构为阴极池和阳极池。根据阴极池结构的不同,MFC 可分为单池型和双池型2 类;根据电池中是否使用质子交换膜,也可分为有膜型和无膜型2 类;根据电子传递方式的不同,又可分为直接型和间接型2 类。(其中单池型MFC 由于其阴极氧化剂直接为空气,因而无需盛装溶液的容器;无膜型燃料电池则是利用阴极材料具有部分防空气渗透的作用而省略了质子交换膜。直接型MFC 采用的产电细菌具有将氧化产生的电子传递到阳极的能力。)
这张图是传统微生物燃料电池的结构图,这一张图上大家可以看到细菌在这个流程中的作用。
但是细菌并不是只有靠着电极才可以发电,但是科学家发现有些可以产生电流的细胞如地杆菌在细胞外长有长长的、纤细的丝。试验证明细菌的这些细长的丝是它们纯天然的“电线”,实现细菌远距离发电。
常见产生电流的菌种:希瓦氏菌,铁还原红育菌,硫还原泥土杆菌
这种电池的原料广泛,可以是糖类,包括葡萄糖以及果糖、蔗糖,甚至从木头和稻草中提取出来的含糖副产品的木糖等,都可以充当细菌发电的原料。细菌发电所用的糖完全可以用诸如锯末、桔秆、落叶等废有机物的水解物来替代,也可以利用分解化学工业废物如无用聚合物来发电。
重金属,利用重金属做为原料,是指利用一种能去除地下铀污染物的细菌来发电。科学家们破解了这种能吞噬金属的地下细菌的基因图谱,称它有100多个基因能够使金属发生化学变化,使之产生电能。这种地下细菌的基因组中有100个或更多的基因,能编码不同的C型细胞色素,还具有能来回移动电子的蛋白质。这种细菌能在深层地下水中产生电能,这比先前预计的清洁环境的用处更大。
有机污水,利用生活污水发电设备也可以发电,它是利用在淡水池塘中常见的一种细菌来连续发电的。这种细菌不仅能分解有机污染物,而且还能抵抗多种恶劣环境。节省能源,有利环保。科学家说,利用这种污水发电机,将会有那么一天,能使从马桶冲下去的秽物成为家中照明用电的来源。
啤酒废料,在中国和泰国曾经有过把稻谷和甘蔗的废料制造成能源的案例。同样的程序或许可以用于开发酿酒的废料,而且制造的能源还能用于酿酒。酿造啤酒消耗的能源很多,先要用热水和蒸气煮原料,然后用电使其冷却。湿谷物和废水倒入酵桶中,发酵桶装了可以分解有机化合物的细菌,这样就可以制造沼气,然后把发酵桶中产生的沼气和干煤泥用于烧水和生产高压力的蒸气,而这又能推动涡轮发电。
接下来是发展历史,1786年,意大利医生及物理学家伽凡尼在青蛙腿上发现了“动物电” , 从而把电与代谢过程联系了起来。
1910年英国植物学家马克•皮特首先发现有几种细菌的培养液能够产生电流。于是他以铂作电极,放进大肠杆菌或普通酵母菌的培养液里,成功地制造出世界上第一个细菌电池。波特尔直觉地认识到, 这种微生物燃料电池的电子是由微生物的食物降解产生的。他无法用当时仅仅属于想象的代谢过程的生化原理来解释他的实验结果。但当时的科学界并没有因此而畏缩不前。后来, 微生物学家和酶学象南明了细菌中的酶是如何氧化其食物的。那时波特尔的微生物燃料电池己基本被遗忘了。
1913年,剑桥大学的柯恩复活了波特尔的思想。他记述了微生物燃料电池的电池组产生3 5伏以上电压的情况。
本世纪六十年代,美国国象航空和航天管理局曾支持许多生物电的研究计划, 如把有机垃圾转化为电流的方法。
直到宇航世纪的来临和出现一石油圆乏, 才重新引起对这一课题的注意。1984年,美国科学家设计出一种太空飞船使用的细菌电池,其电极的活性物质是宇航员的尿液和活细菌。不过,那时的细菌电池放电效率较低。
2002年后,随着直接将电子传递给固体电子受体的菌种的发现,人们发明了无需使用电子传递中间体的微生物电池,其中所使用的菌种可以将电子直接传递给电极。
MFC技术的应用前景正在不断拓展中。例如,将MFC阳极插入海底(河底、湖底)沉积物中,阴极置于临近海水中,则可收集到天然的、由微生物代谢产生的海底电流,这可为各类海洋监测仪器提供电源.此外,MFC技术还可用于生物修复,例如在有高浓度有机物污染的地点(如石油污染),可置入MFC阳极完成对有机物的氧化。
应用领域,替代能源,随着工业经济的发展、人口的剧增、人类欲望的无限上升和对自然资源无节制地大规模开采,全球能源消费急剧增加。这不仅使世界能源供应面临严重危机,而且二氧化碳的过度排放导致全球气候变暖,对人类社会的可持续发展构成严峻挑战。微生物发电细菌工艺也会产生二氧化碳等对空气造成污染的物质,但与使用矿物燃料所排出的废气相比,它对全球变暖的危害要低得多,在某种程度上可以是被称作清洁能源的。而且在死海和大盐湖里找到一种嗜盐杆菌,它们含有一种紫色素,在把所接受的大约10%的阳光转化成化学物质时,即可产生电荷。科学家们利用它们制造出一个小型实验性太阳能细菌电池,结果证明是可以用嗜盐性细菌来发电的,用盐代替糖,其成本就大大降低了。由此可见,让细菌为人类供电已不是遥远的设想,而是不久的现实。
污水处理,以有机污水为燃料、回收利用污水中有机质的化学能-一直是MFC 研究中的主要目的,但在研究中,对于MFC处理后污水水质的监测结果使研究人员对以MFC 工作原理为基础,开发新的污水处理工艺产生了浓厚兴趣。2004 年,研究发现,直接用以空气为阴极的MFC处理生活污水,COD 去除率达到80%。值得注意的是,MFC 在厌氧降解有机物的同时,污水PH 保持中性,且溶液中没有常规厌氧环境发酵产生的CH4和H2等。因此,MFC 可以作为污水的常规处理手段,去除率可以达到与一般厌氧过程同样的效果,但MFC 不会使污水水质发生酸化,也不会产生具有爆炸性的危险气体,因此具有很好的开发前景。
微生物传感器,BODS被广泛用于评价污水中可生化降解的有机物含量,但由于传统的BOD测定方法需要5天的时间,因此,出现了大量关于BOD 传感器的研究,以MFC 工作原理为基础的BOD传感器的研究也是研究人员关注的焦点。利用MFC 工作原理开发新型BOD传感器的关键在于:1电池产生的电流或电荷与污染物的浓度之间呈良好的线性关系;2电池电流对污水浓度的响应速度较快;3有较好的重复性。
恶劣环境能量供应,细菌发电也可用于其他环境条件下,比如在充电条件困难以及成本高的情况下。使用这项技术为监视过往船只及潜艇的水下扩音器和声呐提供动力。通过这项技术,动物粪便或污水等含有碳水化合物的废物,都能为电冰箱和炉子提供电力,可以为生活在偏远地区的人带来帮助。
航天领域,飞向宇宙是技术发展方向的必然方向,宇宙是人类未来的主要资源来源。目前载人飞船上天,宇航员在太空飞行中的排泄物要被带回地球。如果有朝一日人类能踏上火星,那么往返火星与地球之间就需要四年的时间。粗略估算,在此期间,6名宇航员将会“制造”出6吨多的排泄物垃圾。这些废物垃圾该如何处置呢?日前科学家正在研究出利用“泥菌”属微生物将这些太空垃圾变废为宝。即让“泥菌”属微生物“吃下”人类的排泄物,产出来电能。
最后就是科学家们对这种技术的展望了,实现微生物的大规模发电,应对能源危机,也可以降低国家对产油国的依赖。食物喂养机器人,可以最大限度的放开机器人的自主权,未来的微型机器人行星探险家将采用有效而可靠的微生物燃料电池,无需科学家进行干预。
飞向太空,可以实现宇宙飞船就地取材,实现太空中能源自给自足。不过微生物燃料电池是一项新兴技术,没有大规模应用,还需要很长一段时间才能走向成熟。
实验一显微镜构造和使用及微生物检测一、实验目的1.掌握显微镜的构造、性能和使用方法,重点掌握普通光学显微镜油镜的使用。 2.了解和利用普通光学显微镜油镜对细菌、放线菌......
燃料电池技术发 展 动 态北京天恒可持续发展研究所2000年7月目录为开发生物质燃料电池,ERC在中国建立合资企业 ................................................................
氢燃料电池汽车是人们生活中的重要交通工具,而汽车排放的尾气又是造成日益严重的环境污染的重要原因,为此,人们急需寻找一种代用燃料。科学家经过几十年的精心研究发现,用氢燃料......
《食品微生物检测》说课稿各位评委老师大家好:今天我说课的内容是食品微生物检测,我将从课程设置、课程内容选取、教学方法与手段、课程考核四个方面来对本课进行说明。一、课......
基于合成生物学技术的微生物燃料电池菌种分子育种研究雍阳春*,孙建中江苏大学生物质能源研究所,江苏省镇江市学府路301号,212013;*email:微生物燃料电池(MFC)是一种将生物可利用......
