平行线的判定和性质专项练习题_平行线的判定性质习题
平行线的判定和性质专项练习题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“平行线的判定性质习题”。
[一]、平行线的判定
一、填空
1.如图1,若A=3,则∥;若2=E,则∥; 若+= 180°,则∥.d aa 5 2 23 b b B B 3 C A
图2 图1 图3 图4
2.若a⊥c,b⊥c,则ab.
3.如图2,写出一个能判定直线l1∥l2的条件:.
4.在四边形ABCD中,∠A +∠B = 180°,则∥().
5.如图3,若∠1 +∠2 = 180°,则∥。
6.如图4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;内错角有;同旁内角有.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
A D Dl1 14 5 3l2 C B C
图7 图5 图6
8.如图6,尽可能多地写出直线l1∥l2的条件:.
9.如图7,尽可能地写出能判定AB∥CD的条件来:.
10.如图8,推理填空:
(1)∵∠A =∠(已知),A
∴AC∥ED();
(2)∵∠2 =∠(已知),∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C∴AB∥FD(); 图8(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
(第1页,共4页)
二、解答下列各题
11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
D
F
B图9
12.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
B D C
图10
13.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
E
B
F
Q 图1
1P D
[二]、平行线的性质
一、填空
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.F 1 BB ED DF
B C A B D
图1 图2 图4 图
33.如图3所示
(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.
(3)若∠A +∠= 180°,则AE∥BF.
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.
5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.
E C
l
12F B F Gl2 D D F CC B A G
图5 图6 图7 图
6.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.
二、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CF
D
图9
10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.E
B C
图10
11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)
BE
C
图11
]
12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.
求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
B A
C
F 图12
D
D
平行线的判定定理和性质定理[一]、平行线的判定一、填空1.如图1,若A=3,则∥;若2=E,则∥; 若+= 180°,则∥.c d A a E a 52 23 b B b C A B图4 图3 图1 图22.若a⊥c,b⊥c,则ab.3.如图2,写出一个能......
第五章 相交线与平行线 练习题一、填空题1.如图,直线AB、CD相交于点O,若∠1=28°,则∠2=_______.2.已知直线AB∥CD,∠ABE60,∠CDE20,则∠BED度. 3.如图,已知AB∥CD,EF分别交AB、CD于点......
1.如图:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3,求证 :AD平分∠BAC。2.已知:如图5, DE∥BC,CD是∠ACB的平分线,∠B=700,∠ACB=500.求∠BDC的度数.AE DB C图53.如图,台球运动中,如果母球P击中边......
平行线的判定和性质练习题一、知识点:二、基础训练:1:①如图,找出图中所有的同位角;找出图中所有的内错角;找出图中所有的同旁内角。②∠BAC和∠是和被所截的内错角;∠ACD和∠是......
1.已知如图,∠BMD=∠BAC, ∠1=∠2,EF⊥BC,求证:AD⊥BC2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠DDE⊥AC4.已知如图, AD⊥BC, EF⊥BC,......
