行列式算法归纳总结_行列式计算方法小结

2020-02-28 其他工作总结 下载本文

行列式算法归纳总结由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“行列式计算方法小结”。

数学与统计学学院

中期报告

学院:

专业:

年级:

题目:

行列式的算法归纳

学生姓名: 学号:

指导教师姓名 职称:

2012年6月20日

目录

引言..................................................................................................................................................2 1 行列式性质...................................................................................................................................2 2 行列式计算方法...........................................................................................................................5

2.1定义法.................................................................................................................................5 2.2递推法.................................................................................................................................6 2.3化三角法.............................................................................................................................9

2.4拆元法...............................................................................................................................11.4加边法..............................................................................................................................12 2.6数学归结法.......................................................................................................................14 2.7降价法...............................................................................................................................15 2.8利用普拉斯定理...............................................................................................................16 2.9利用范德蒙行列式...........................................................................................................17 结论................................................................................................................................................18 参考文献.........................................................................................................................................18

行列式的概念及应用

摘要:本文先列举行列式计算相关性质,然后归纳总结出了行列式的计算方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理和利用范德蒙行列式的方法。

关键词:行列式;线性方程组;范德蒙行列式

The concept and application of determinant

In this article, it first lists some calculated properties of determinants, and then characterizes some methods to calculate determinant, including: definition, triangulation, recursive method, remove method, bordered,Mathematical induction,reduction,the method using Laplace theorem or the van demon determinant.Keywords: determinant;system of linear equations;Van demon determinant

引言

行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。日本数学家关孝和提出来的,他在1683年写了一部名为解伏题之法的著作,意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国数学家,微积分学奠基人之一莱布尼茨。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。行列式的性质

性质1 行列互换,行列式值不变,即

a11a12a1na21a22a2nan1an2anna11[1]

a21a22a2nan1an2 anna12a1n其实,元素aij在上式的右端位于第j行第i列,即此时i是列指标,j为行指标。

在行列式中,行与列的地位是对称的,所以有关行的性质,对列也成立。

性质2 如果行列式中一行为零,那么行列式为零。

的元都是二项式,那么这个行列式等于把这些性质3 如果行列式的某一行或一列二项式各取一项作成相应行或列而其余行或列不变的两个行列式的和。

a11b1jc1ja21b2jc2jan1bnjcnja1na11b1ja2na21b2jannan1bnja1na11c1ja2na21c2jannan1cnja1na2n ann这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外全与原来行列式的对应的行一样。

性质4 如果行列式中有两行相同,那么行列式为零,所谓两行相同就是说两行的对应元素都相等。

性质5 如果行列式中两行成比例,那么行列式为零。性质6 把一行的倍数加到另一行,行列式不变。性质7 对换行列式中两行的位置,行列式反号。

2.行列式的计算方法

2.1 定义法

n阶行列式计算的定义[3]:

a11Dna21an1其中,j1j2jna12a1na22a2nan2ann(1)(j1j2jn)a1j1a2j2anjn

j1j2jn表示对所有n级排列求和。j1j2jn是1,2,,n的一个排列,当j1j2jn是(j1j2jn)偶排列时,(1)是正号;当j1j2jn是奇排列时,(1)(j1j2jn)是负的。a1j1a2j2anjn是D中取自不同行不同列的n个元素的乘积。

a11a21例2.1:证明Da31a12a22a32a42a52a13a23000a14a24000a15a2500.00a41a51分析 观察行列式我们会发现有许多零,故直接用定义法.证明: 由行列式的定义知除去符号差别外行列式一般项可表示为a1j1a2j2anjn 则

Dnj1j2j5(1)(j1j2j5)a1j1a2j2anjn.(3)

其中j1,j1,,j5为1,2,3,4,5的任意排列,在D中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(3)式中每一项至少有一个来自后三行后三列.故D=0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2.3 递推法

应用行列式的性质,把一个较高阶行列式表示为具有相同结构的较低阶行列式(比如,n-1阶或n-1阶与n-2阶等)的线性关系式,这种关系式称为递推关系式。根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n阶行列式的值,这种计算行列式的方法称为递推法。

注意:用此方法一定要看行列式是否具有较低阶的相同结构如果没有的话,即很难 找出递推关系式,从而不能使用此方.[4]

例2.2证如下行列式等式

Dn1001000000

0001n1n1,其中(虽然这是一道证明题,但我们可以直接求 证明: Dn出其值,从而证之)。

分析:此行列式的特点是:除主对角线及其上下两条对角线的元素外,其余的元素

都为零,这种行列式称“三对角”行列式。从行列式的左上方往右下方看,即知Dn1与Dn具有相同的结构。因此可考虑利用递推关系式计算。

证明:Dn按第1列展开,再将展开后的第二项中n-1阶行列式按第一行展开有:

Dn(+)Dn-1-Dn-2,这是由Dn1 和Dn2表示Dn的递推关系式。若由上面的递推关系式从n阶逐阶往低 阶递推,计算较繁,注意到上面的递推关系式是由n-1阶和n-2阶行列式表示n阶行列式,因此,可考虑将其变形为:

Dn-Dn-1=Dn-1-Dn-2=(Dn-1-Dn-2)或 Dn-Dn-1=Dn-1-Dn-2=(。Dn-1-Dn-2)现可反复用低阶代替高阶,有:

23Dn-Dn-1=(Dn-1-Dn-2)=(Dn-2-Dn-3)=(Dn-3-Dn-4)==(D2-D1)=同样有 n2n-2[()()](1)2n

23Dn-Dn-1=(Dn-1-Dn-2)=(Dn-2-Dn-3)=(Dn-3-Dn-4)[()()](2)n1n1因此当 时,由(1)(2)式可解得:Dn。

==(D2-D1)=n2n-22n

小结:虽然我们从一个行列式中可以看出有低阶的相同的结构,然后得到一递推关系式,但我们不要盲目乱代,一定要看清这个递推关系式是否可以简化我们的计算,如果不行的话,就要适当地换递 推关系式,如本题。

2.3化三角形法

运用行列式的性质是计算行列式的一个重要途径,大多数行列式的计算都依赖于行列式的性

[7]质,将行列式化成上三角(下三角或反三角)的形式,再根据行列式的定义来计算行列式.行列式的性质告诉了我们该如何求行列式,而一切的行列式都可以根据以上性质来进行初等行变换(列变换),变成阶梯形(上三角)的行列式,再根据定义计算即可.其计算步骤可归纳如下:

(ⅰ)看行列式的行和(列和),如果行列和相等,则均加到某一列(行)(直观上加到第一列(行)).(ⅱ)有公因子的提出公因子.(ⅲ)进行初等行变换(列变换)化成上三角(下三角或反三角)的行列式.(ⅳ)由行列式的定义进行计算.由以上四步,计算一般行列式都简洁多了.123n1234[6]例2.3 计算行列式Dn345n1n12.n12n2n1分析 直接用化三角形法化简很烦,观察发现对于任意相邻两列中的元素,位于同一行的元素中,后面元素与前面元素相差1,因此先从第n1列乘-1加到第n列,第n2列乘-1加到第n1列, 这样做下去直到第1列乘-1加到第2列,然后再计算就显得容易.123n1234解:Dn345n1n12123111111111n11n1

10001000n12n2n1

n1n112n12n111210011100n10n0nn1n0000000n0

000n0n0

00n0000n1n(n1)000n2n00(n1)(n2)1n(n1)(1)2 n2n(n1)(n1)n1n(1)2.2问题推广

在例2.3中1,2,,n,这n个数我们可以看成有限个等差数列在循环,那么对于一般的等差数列也应该适应.计算行列式 [1]

a1Da1da12da1(n1)da1a1da12da1(n1)da1d2d(n1)da1a1da12da13da1ddda12da1(n1)da13da14da1ddda1nda1a1(n3)dda1nda1a1da1(n2)d

ddd(1n)ddddnd

d(1n)dd d(1n)dddndnd0000000nd0 d(n1)dnnd2d(n1)dndnd00(n1)(n2)d(n1)dn1(a1)(nd)(1)2

nn(n1)(n2)1n(a1a1(n1)d)n1()(nd)(1)2.n2

(n1)(n2)1n(a1a1(n1)dn1)(nd)(1)2结论如果将例2.3中的数a11,d1代入(n2显然成立.2.4.拆元法

由行列式拆项性质知,将已知行列式拆成若干个行列式之积,计算其值,再得原行 列式值,此法称为拆行(列)法。

由行列式的性质知道,若行列式的某行(列)的元素都是两个数之和,则该行列式可拆成两个行列式的和,这两个行列式的某行(列)分别以这两数之一为该行(列)的元素,而其他各行(列)的元素与原行列式的对应行(列)相同,利用行列式的这一性质,有时较容易求得行列式[2]的值。

例2.4求下列行列式的值 设n阶行列式:

a11a21an1a12a1na22a2n1

an2ann且满足aijaji,i,j1,2,,n,对任意数b,求n阶行列式

a11ba12ba1nba21ba22ba2nb?

an1ban2bannb 分析:该行列式的每个元素都是由两个数的和组成,且其中有一个数是b,显然 用拆行(列)法。

解:

a11ba12ba1nba11a12ba1nbba12bDa21ba22ba2nba21a22ba2nbba22bnan1ban2bannban1an2bannbban2ba11a12a1nba11ba1nb1a12a1na21a22a2nb1a22a2na21ba2nbb

an1an2annban1bannb1an2anna11a12a1na111a1n1a12a1na21a22a2nba211a2n1a22a2nb

an1an2annan11ann1an2annnnn1bA2ibA1i1bi1iAij。

i1,j1又令

a11a12a1nA=a21a22a2n,且aijaji,i,j1,2,,n。

an1an2ann

所以 有A1,且A'A。

由A-1=A*A得:AA-1A*即A*A=E 所以 A*=A-1。7

a1nba2nbannb

又(A*)(A1)'(A')1(A)1A*,所以 A*也为反对称矩阵。

*又 Aij(i,j1,2,,n)为A的元素,所以有i1,j1'nAij0。

从而知:Dn1bi1,j1nAij1。

2.5.加边法

计算行列式往往采用降阶的办法,但在一些特殊的行列式的计算上却要采用加边法。行列式的加边法是为了将行列式降阶作准备的。更有利于将行列式化成上三角的形式,其加边的元素,也可根据计算的难易程度来确定。具有随意性。利用行列式按行(列)展开的性质把n阶行列式通过

[3]加行(列)变成与之相等的n1阶行列式,然后计算.添加行列式的四种方法[18]:设Dna11a21an1a12a1na22a2nan2ann.(1)首行首列Dna11a21an1a11a21an1a11a21an1a11a21an1a12a1na22a2nan2anna12a1na22a2nan2anna12a1na22a2nan2anna12a1na22a2nan2ann1a1a2an0a110a210a11a21an1a1a2a31a11a21a3100a12a22an2a11a21a310a12a22a320a12a1na22a2n.an2ann01a13a1a23a2.an3ana12a1na22a2na32a3n.00a13a1a23a2a33a3.010an1(2)首行末列Dn(3)末行首列Dn(4)末行末列Dn例2.5 计算n 阶行列式: [4]

x121Dnx1x2x1x2x1x2x221x1x2x1x2x1x2xn21

分析 我们先把主对角线的数都减1,这样我们就可明显地看出第一行为x1与x1,x2,,xn相乘,第二行为x2与x1,x2,,xn相乘,„„,第n行为xn与x1,x2,,xn相乘。这样就知道了该行列式每行有相同的因子x1,x2,,xn,从而就可考虑此法。解:

1x1x20x121x1x22Dn0x2x1x210xnx1nxn1x1x2x1(i1,,n)x2xnx2ri1xir1x1100x2xn001001xnx22i12xn1x1100xnn1

1xic1xici1(i1,,n)x2xn0100011xi2。i1n000n1注意:加边法最在的特点就是要找出每行或每列相同的因子,那么升阶之后,就可利用行列式的性质把绝大部分元素化为零,然后再化为三角形行列式,这样就达到了简化计算的效果。

2.6数学归结法

数学归纳法有两种一种是不完全归纳法,另一种是完全归纳法,通常用不完全归纳法寻找行列式

[5]的猜想,再用数学归纳法证明猜想的正确性.基本方法

1)先计算n1,2,3时行列式的值.2)观察D1,D2,D3的值猜想出Dn的值.3)用数学归纳法证明.例2.6 证明: [6]2cos1 Dn12cos100010000000012cossin(n1)sin(sin0)0002cos2cos1证:当n1,2时,有

sin(11)sin

2cos1sin(21)D24cos2112cossinD12cos结论显然成立。

现假定结论对小于等于n1时成立。即有

Dn2将Dn按第1列展开,得

sin(n21),sinDn1

sin(n11)。

sin2cos1Dn0012cos00000012cos2cos10002cos00000012cos2cos1(n1)2cos1(n1)2cosDn1Dn2sin(n11)sin(n21)sinsin2cossinnsin(n1)sin2cossinnsinncoscosnsinsinsinncoscosnsinsinsin(n1)sin2cos

故当对n时,等式也成立。得证。

2.7降阶法

n阶行列式等于它的任意一行(列)各元素与其对应的代数余子式乘积的和.即

DaijAij(i1,2,,n)或DaijAij(j1,2,,n).j1i1nn行列式按一行(列)展开将高阶转化为若干低阶行列式计算方法称为降阶法.这是一种计算[9]行列式的常用方法.1301例2.7 计算D30141121011001.1解 D30911022001109111220110214.21注意 对于一般的n阶行列式若直接用降阶法计算量会大大加重.因此必须先利用行列式的性质将行列式的某一行(列)化为只含有一个非零元素,然后再按此行(列)展开,如此进行下去,直到二阶.2.8 利用拉普拉斯定理

在利用行列式的一行(列)展开式时,我们可以发现计算行列式可以按某一行(列)展开,进行计算行列式.试想,我们可以根据行列式的某一个K级字式展开吗? 拉普拉斯经过对行列式的研究.终于发现此种方法可行,并给出了严密的证明,为了使行列式的计算更为简洁,现引入拉普拉斯定理.拉普拉斯定理[12]:设在行列式D中任意取定了k1kn1个行,由这k行元素所组成的一切K级字式与它们的代数余子式的乘积的和等于行列式D.拉普拉斯定理的四种特殊情形:

1)AnnCmn00BmmAnnCmnAnnBmm

Ann2)

0CnmAnnBmm Bmm3)Bmm(1)mnAnnBmm 4)

CnmBmmAnn0(1)mnAnnBmm

例2.8计算n阶行列式

aaaabDnbb



Dn(i2,n1)aaaabi1200(n1)a000000aa0a

0C2Ci0b(n2)(i3,n)00000000利用拉普拉斯定理(n1)ab(n2)2200n20000(n2)(n2)[(n2)ab(n1)]()2.9 利用范德蒙行列式

范德蒙行列式[14]

1x1x12x1n11x2x22n1x21x3x32n1x31xn2xn1jinn1xn(xixj)

(an1)n1(an1)n2例2.9[16]

(an2)n1(a1)n1(an2)n2(a1)n2an21a11an1an2 a1:计算n阶行列式 Dnan11解 : 显然该题与范德蒙行列式很相似,但还是有所不同,所以先利用行列式的性质把它化为范德蒙行列式的类型。

先将的第n行依次与第n-1行,n-2行,„,2行,1行对换,再将得到到的新的行列式的第n行与第n-1行,n-2行,„,2行对换,继续仿此作法,直到最后将第n行与第n-1行对换,这样,共经过(n-1)+(n-2)+„+2+1=n(n-1)/2次行对换后,得到

1Dn(1)n(n1)21an21a11a an2an1an1(an1)n2(an1)n1(an2)n2(a1)n2(an2)n1(a1)n1上式右端的行列式已是范德蒙行列式,故利用范德蒙行列式的结果得

EnABnmEmBA

Dn(1)n(n1)21jin[(ani)(anj)](1)n(n1)21jin(ij)

结论:

综上所述,针对行列式结构特点而采用与之相适应的计算技巧,从而总结出了多种类型题目所适用的计算方法,因此,对于计算行列式的方法,我们首先要熟练掌握并懂得如何选择、运用,不管是哪一种行列式的计算,选取恰当的方法,才能较快地解出其值。

参考文献

[1]李师正等.高等代数复习解题方法与技巧.高等教育出版社, 2005 [2]张贤科 许甫华.高等代数学.清华大学出版社, 2000 [3]刘学鹏等.高等代数复习与研究.南海出版公司, 1995 [4]许甫华 张贤科.高等代数解题方法.清华大学出版社, 2001 [5]李永乐.研究生入学考试线性代数.北京大学出版社, 2000 [6]王萼芳 石生明.高等代数学.高等教育出版社, 2003 [7]吕林根.许子道.解析几何.高等教育出版社 2006 [8]贾冠军.菏泽师专学报, Journal of Heze Teachers College, 1999年 02期

[9]吴晓庆,关丰宇.行列式的相关性质与应用.数学学习与研究 2011年第3期

[10] 张子杰.行列式计算中的一些方法.河北工程技术高等专科学院学报.[11] 北京大学数学系几何与代数教研室代数小组,高等代数(第二版).北京:高等教育出版社,1994 [12] 王品超著,高等代数新方法.济南:山东教育出版社,1989 [13] 李师正,高等代数复习解题方法与技巧.高等教育出版社,2005

[14] 刘洪星,高等代数选讲.机械工业出版社,2009 [15] 姚慕生,高等代数.上海:复旦大学出版社,2002 [16] 许甫华,张贤科.高等代数解题方法.北京:清华大学出版社,2001 [17] 期刊论文 ,一个n阶行列式的若干种计算方法.科技信息,2009,(3):18-23 [18] 张禾瑞 郝鈵新 《高等代数》 高等教育出版社 1999 [19] 徐仲 陆全 张凯院 吕全义 安晓虹 《高等代数》 西北工业大学出版社 2006

算法总结

算法分块总结为备战2005年11月4日成都一战,特将已经做过的题目按算法分块做一个全面详细的总结,主要突出算法思路,尽量选取有代表性的题目,尽量做到算法的全面性,不漏任何ACM可......

算法总结

算法分析与设计总结报告71110415 钱玉明在计算机软件专业中,算法分析与设计是一门非常重要的课程,很多人为它如痴如醉。很多问题的解决,程序的编写都要依赖它,在软件还是面向过......

计算行列式的方法总结

刀豆文库小编为你整合推荐7篇计算行列式的方法总结,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

计算行列式的方法总结

计算行列式的方法总结行列式涉及的方面很多,例如判断矩阵可逆与否要计算行列式的值、解线性方程组、特征值等都与求行列式密不可分,所以各种类型解行列式的方法一定要掌握好,才......

行列式运算法则

行列式与它的转置行列式相等。交换行列式的两行,行列式取相反数。行列式的某一行的所有元素都乘以同一数k,等于用数k乘此行列式。行列式如果有两行元素成比例,则此行列式等于零......

《行列式算法归纳总结.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
行列式算法归纳总结
点击下载文档
相关专题 行列式计算方法小结 行列式 归纳 算法 行列式计算方法小结 行列式 归纳 算法
[其他工作总结]相关推荐
[其他工作总结]热门文章
下载全文