二次函数课件教案(实用14篇)
教案中需要关注学生的学习特点和需求,课堂教学的反馈和评估也应成为教案的重要内容。编写教案前,教师需要充分了解教学内容和学生的学习情况。以下是一些优秀教师编写的精彩教案,希望对大家有所启发。
二次函数课件教案篇一
在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
将本文的word文档下载到电脑,方便收藏和打印。
二次函数课件教案篇二
3.能够利用二次函数的图象求一元二次方程的近似根。
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
启发引导 合作交流
课件
计算机、实物投影。
检查预习引出课题
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
二次函数课件教案篇三
(二)能力训练要求。
1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、
3、通过学生共同观察和讨论,培养大家的合作交流意识、
(三)情感与价值观要求。
2、具有初步的创新精神和实践能力、
二次函数课件教案篇四
学习难点:二次函数的性质与图像的应用;
图象a0a0。
性质。
例2:
(1)已知函数n在区间上为增函数,求a的范围;
(2)已知函数n的单调区间是(0,1),求a;
例3:求二次函数n在区间[0,3]上的最大值和最小值;
变式:
(1)已知m在[t,t+1]上的最小值为g(t),求g(t)的表达式。
(2)已知m在区间[0,1]内有最大值-5,求a。
(略)。
二次函数课件教案篇五
让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。
:各种隐含条件的挖掘。
:引导发现法。
(一)诊断补偿,情景引入:
(先让学生复习,然后提问,并做进一步诊断)。
(二)问题导航,探究释疑:
(三)精讲提炼,揭示本质:
分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。
解由题意,得点b的坐标为(0。8,-2。4),
又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。
例2、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。
分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。
解这个方程组,得a=2,b=-1。
(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。
(3)因为抛物线与x轴交于点m(-3,0)、(5,0),
所以设二此函数的关系式为。
又由于抛物线与y轴交于点(0,3),可以得到解得。
(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。
(四)题组训练,拓展迁移:
1、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);
(2)已知抛物线的顶点为(-1,2),且过点(2,1);
(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。
2、二次函数图象的对称轴是x=-1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。
(五)交流评价,深化知识:
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。
(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。
本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。
二次函数课件教案篇六
1、教材所处的地位:
2、教学目的要求:
(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
3、教学重点和难点。
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:
重点:
(2)能够表示简单变量之间的二次函数关系.。
难点:
具体的分析、确定实际问题中函数关系式。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
1、教法研究。
教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究。
初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。
3、教学方式。
(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。
(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。
(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
1、温故知新—揭示课题。
由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。
2、自我尝试、合作探究—探求新知。
通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。
3、小试身手—循序渐进。
本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。
4、课堂回眸—归纳提高。
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、课堂检测—测评反馈。
共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。
6、作业布置。
作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。
通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。
二次函数课件教案篇七
二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.
二次函数课件教案篇八
二次函数是初中数学九年级的重要知识点,占中考的比例非常大,因此如何让学生学好二次函数的知识,也是困扰我很久的问题。二次函数知识抽象,不易理解,但是通过画图和列举生活中的实例再观察图形总结出图形的性质,对学生来说不是难点。重点和难点在准确灵活地应用性质。但是要想准确应用,熟记图形与性质是前提,于是我重点放在二次函数的“六个”知识点上。
为了有个较好的教学效果,我采用的是教师精讲、细讲,学生精炼、详练的方法加深记忆。每节课上课一开始,我在黑板上给出一些学过的有代表性的知识加以巩固,为防止出错,开始以小组或者同桌相互检查快速说性质:包括图象、一般形式、对称轴、顶点坐标、增减性、最值六个方面,目的在于牢牢地掌握基础知识。每节课都将前几节课学过的函数式板书,学生自然形成习惯。直到学习顶点式的一般形式这节课,共出示六个代表性的函数,尽管多,但是在前几节课的基础上,学生已经达到熟练快速准确。我和学生开玩笑说,在你的梦中也要呼喊函数的一般形式、图像、增减性、顶点、对称轴、最值;只有达到这种程度,你的函数知识学的才没问题了。
加深理解、强化训练,学生对着自己曾经画过图像的函数说性质,不知不觉中将图像和性质有机的结合在了一起。并逐步的将说具体函数的性质过渡到说一般表达式的函数性质。比如:y=ax2y=ax2+k,y=a(x-h)2+k。提高要求,因为基础知识已经牢牢掌握,因此在练习中对学生严格要求。开始对学生的要求是最多错一个题,结果发现学生的错误很少,后期发现自己的要求低了,于是我改变要求,必须一个不错方可得优等级。结果发现,学生自然对自己的要求也提高了。当发现自己错一个时,就会反思自己那里没学好。一班的学生平时反映灵活,但是缺少深入细致,做题马虎现象严重,必须提高要求,方可让他们耐下心来认真学习。
同时从学生的答题中,及时发现学生存在的问题,及时的利用时间进行讲解。上节课讲过的下次再考照样错,如:宋媛媛同学。在她的反思中,分析到自己不是知识掌握上的问题,而是心态、习惯和马虎的问题,遇到问题不深入细致,导致基础知识的应用出问题。他在月考和期中考试中均获得等级良。“就按这样的习惯学下去,不能考优”“老师,下次我一定考优”请老师相信我。我力争在平时的学习中发现她的问题所在,多么期待她早日达到优等级!
二次函数课件教案篇九
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图。
(2)顶点、图象与坐标轴的交点。
(3)所形成的三角形以及四边形的面积。
(4)对称轴。
从上面的问题导入今天的课题二次函数中的图象与性质。
二次函数课件教案篇十
(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?
(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)。
3.函数y=-4(x-2)2+1具有哪些性质?
(当x2时,函数值y随x的增大而增大,当x2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)。
5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?
二、解决问题。
由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。
解:(1)列表:在x的取值范围内列出函数对应值表;。
x…-2-101234…。
y…-6-4-2-2-2-4-6…。
(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象,如图所示。
说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。
(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。
让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;。
当x=1时,函数取得最大值,最大值y=-2。
三、做一做。
教学要点。
(1)在学生画函数图象的同时,教师巡视、指导;。
(2)叫一位或两位同学板演,学生自纠,教师点评。
教学要点。
教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;。
y=ax2+bx+c。
=a(x2+x)+c。
=a[x2+x+2-()2]+c。
=a[x2+x+()2]+c-。
=a(x+)2+。
当a0时,开口向上,当a0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-,)。
四、课堂练习。
课本练习第1、2、3题。
五、小结。
通过本节课的学习,你学到了什么知识?有何体会?
六、作业。
1.同步练习。
2.选用课时作业优化设计。
课时作业优化设计。
1.填空:
(1)抛物线y=x2-2x+2的顶点坐标是_______;。
(2)抛物线y=2x2-2x-的开口_______,对称轴是_______;。
(4)抛物线y=-x2+2x+4的对称轴是_______;。
(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.
2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。
3.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。
(1)y=3x2+2x;(2)y=-x2-2x。
(3)y=-2x2+8x-8(4)y=x2-4x+3。
4.求二次函数y=mx2+2mx+3(m0)的图象的对称轴,并说出该函数具有哪些性质。
二次函数课件教案篇十一
二次函数的复习我分为两部分:第一部分为基础的复习,第二部分为综合知识的复习。基础知识的复习思路还是比较传统:二次函数图象和性质--实践(方法的选择)--应用(方法的融合),基础知识的复习我没有把书上的公式再一一讲解,而是采用给出例题,在具体的题目中让学生回答它的开口方向、对称轴、顶点坐标图象与x,y轴的交点,这样学习起来不枯燥。总之,整个过程主要是采用学生做、学生讲、学生补充,注重突出学生的数学活动,变“教学”为“导学”。综合知识的复习我放在第二课时,采用循序渐进的方法来复习,在习题的选择上我注意了广度与前后知识的联系,但深度和综合性还不够。这两节复习课不仅仅是对知识的复习,而且也让学生学会对所学知识进行归纳总结,同时回用所学知识解决相关的实际问题。
上完这堂课我首先感受到了集体备课的好处,可以取长补短,整堂课也具有连贯性,而不是以前的讲到哪儿算哪儿。课前的精心备课也让我整个课堂比较流畅、紧凑容量大。总的来说要上好一堂复习课应该注意以下几点:
1、课前精心备课,加强备课组的联系。
2、重视课本,夯实基础。
3、复习不要只讲究快,而要注意前后的联系,尤其是初三的知识要注意随时渗透。
总的来说,用好教材是我们面临的最重要的问题,教材改变了传统的教学大纲对教学内容的轻能力重知识的要求,出现了许多新的教育思想把教材的内容分解成一个一个的小步子,一会儿几何知识,一会儿代数知识,作为教师就是要让学生自己去探究,教会学生学习的方法。通过几年的教学实践探究,使我清楚地认识到,必须要改变以往的以教师为中心,学生机械模仿教师的解题过程,死记硬背,这种方法已在教台站不着脚。同时,新教材还有独特的一面,那就是紧密结合学生的生活实际,从学生的心理和年龄特点考虑:使枯燥的数学变得有趣了,变的学生好容易理解了,这样不但激发了学生的学习兴趣,而且体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。
二次函数课件教案篇十二
(1)知识结构。
(2)重点、难点分析。
本节的重点之一是使学生能掌握用描点法画出抛物线的方法。后面的学习中,经常会涉及到利用函数图像解决数学问题。因此,快速、准确地画出二次函数的图像,是学生必须要掌握的基本技能。画图时要求科学、准确。并且要尽量做到美观,这就要求要确定抛物线顶点的位置,与y轴、x轴交点的位置,对称轴开口方向等。因此,利用图像或配方法确定抛物线的开口方向及对称轴、顶点的位置成为本节的另一个重点,二次函数是初中阶段遇到的较为复杂的函数,无论它的解析式,还是它的图像、性质等都比另外三种函数复杂。在中考中,更始几乎每一年都要考察二次函数的相关知识。学生在反复地描点画图过程中,逐渐体会数形结合的数学思想,认识到图形更直观,能帮助我们发现解决问题的线索。在配方的具体训练中,学生能体会到配方的思想。
本节的难点之一是初步理解数形结合的思想。学生对深刻理解数形结合的数学思想方法有一定的困难。往往是题目要求画图了才画图,比较被动,不能形成主动画图解题的习惯。另外,对二次函数对称轴的理解也是难点。学生可以从图像中识别出抛物线关于哪条直线对称,但对主动应用抛物线的对称性解题却有一定的困难。例如抛物线直线方程也不太理解。
2、教学建议。
这一节的知识点较多,正如前面所分析的二次函数是初中阶段所遇到的较为复杂的函数,而且对灵活性的要求较高。因此,要求学生在学习这一部分知识时要深刻地理解,不能机械地模仿、记忆。在老师创设的教学情境中,亲自感受数学知识的形成过程,积累丰富的经验,凭借自己的力量获取知识,从而达到培养能力的目的。
(1)创设情境,激励学生提出问题。
辩证唯物主义告诉我们,理性认识是从丰富的感性认识中抽象、概括出来的。没有一定数量的材料和经验,事物的规律、本质是很难发现的。因此,在这一节课的开始,建议教师留出一段时间与学生共同列表、画图,允许学生有一个走弯,对称轴方程是x=1,学生对表示对称轴的路的过程,在探索的过程中,会有许多的疑问。而这恰是学习新知识的开始。例如,有的同学会认识到在画图时,有一个点是很重要的,必须要画出来。那么这个点的坐标是如何确定的呢?如果教师舍不得花时间,让学生不断地体验,而是迅速切入正题,指明二次函数的形状,教学生记下二次函数的性质。那么学生就丧失了主动探索的机会。我们要意识到,认识客观事物是有一个过程的,人为地缩短或逾越,违反了事物发展的一般规律。由老师代替学生的思考,会使数学学习索然无味,学习成为机械地模仿、复制,这样也会导致学生对数学概念的肤浅理解,无法把握事物运动变化的规律性,数学能力自然无法提高。
(2)数学地发现问题,解决问题。
学习数学要善于多问几个为什么。刚才提到,在画图时,我们意识到二次函数的顶点非常重要,是必须要画出来的。二次函数在顶点处拐了一个弯,当抛物线开口向上时,图像有最低点;当抛物线开口向下时,图像有最高点。那么为什么二次函数有这个性质,而一次函数就没有呢?例如:,可变形为,依靠以前学过的代数知识,可知。又因为抛物线开口向上,所以会有最低点。学生在探索过程中不断地发现问题,并利用自己学过的知识解决问题。在这个过程中,对数学的理解不断地加深。
(3)反思回顾,总结深化。
我们的教学可以从画个图开始,却不能止于仅能熟练画出图像。在发现二次函数的性质并进行代数方面的逐一说理论证的过程中。试图使学生领悟到数学知识的客观存在性,树立怀疑一切的科学探索精神。在学习时,既要建立相应的图像,借助形象整体、全面地把握知识,又要会用数学抽象,概括的语言去刻画。使学生既欣赏到数学的美,又为数学的力量所折服。正如笛卡儿所说:“每一个我解决过的问题都成为以后解决其它问题的原则或方法。”因此,如果学生情况允许的话,可以组织学生撰写小论文,谈一谈二次函数的学习。对这部分知识不仅要知道操作步骤,还要善于多问几个为什么?这样,在熟练地画图过程中,学生逐渐地体会到了数形结合的思想方法。
二次函数课件教案篇十三
通过小球飞行高度问题展示二次函数与一元二次方程的联系。然后进一步举例说明,从而得出二次函数与一元二次方程的关系。最后通过例题介绍用二次函数的图象求一元二次方程的根的方法。
二教学目标。
1知识与技能。
(1)。经历探索函数与一元二次方程的关系的过程,体会方程与函数之间的联系。总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根。
(2)。会利用图象法求一元二次方程的近似解。
2过程与方法。
经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
三情感态度价值观。
通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况培养学生自主探索意识,从中体会事物普遍联系的观点,进一步体会数形结合思想。
四教学重点和难点。
重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。
难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
五教学方法。
讨论探索法。
六教学过程设计。
(一)问题的提出与解决。
h=20t5t2。
考虑以下问题。
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
(3)球的飞行高度能否达到20.5m?为什么?
(4)球从飞出到落地要用多少时间?
分析:由于球的飞行高度h与飞行时间t的关系是二次函数。
h=20t-5t2。
所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值。
解:(1)解方程15=20t5t2。t24t+3=0。t1=1,t2=3。
当球飞行1s和3s时,它的高度为15m。
(2)解方程20=20t-5t2。t2-4t+4=0。t1=t2=2。
当球飞行2s时,它的高度为20m。
(3)解方程20.5=20t-5t2。t2-4t+4.1=0。
因为(-4)2-44.10。所以方程无解。球的飞行高度达不到20.5m。
(4)解方程0=20t-5t2。t2-4t=0。t1=0,t2=4。
当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出。4s时球落回地面。
由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?
例如:已知二次函数y=-x2+4x的值为3。求自变量x的值。
分析可以解一元二次方程-x2+4x=3(即x2-4x+3=0)。反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值。
一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0。
(二)问题的讨论。
(2)y=x2-6x+9;。
(3)y=x2-x+0。
的图象如图26.2-2所示。
先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题。
可以看出:
(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1。当x取公共点的横坐标时,函数的值是0。由此得出方程x2+x-2=0的根是-2,1。
(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3。当x=3时,函数的值是0。由此得出方程x2-6x+9=0有两个相等的实数根3。
(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根。
总结:一般地,如果二次函数y=的图像与x轴相交,那么交点的横坐标就是一元二次方程=0的根。
(三)归纳。
一般地,从二次函数y=ax2+bx+c的图象可知,
(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根。
(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
由上面的`结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。
(四)例题。
例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)。
解:作y=x2-2x-2的图象(如图),它与x轴的公共点的横坐标大约是-0.7,2.7。
所以方程x2-2x-2=0的实数根为x1-0.7,x22.7。
七小结。
二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
八板书设计。
用函数观点看一元二次方程。
抛物线y=ax2+bx+c与方程ax2+bx+c=0的解之间的关系。
例题。
二次函数课件教案篇十四
1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
【本文地址:http://www.daodoc.com/zuowen/12853848.html】
刀豆文库小编为你整合推荐3篇二次函数课件,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
二次函数课件(推荐15篇)由网友“阿瑟”投稿提供,以下是小编为大家准备的二次函数课件,仅供参考,欢迎大家阅读。篇1:二次函数课件 1. 能画二次函数的图象,并能够比较它们与二次函数......
二次函数课件二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是中考热点之一。以下是专门为你收集整理的二次函数课件,供参考阅读!二次函数课件......
刀豆文库小编为你整合推荐7篇二次函数教学课件,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
二次函数教学课件创设问题情境,让学生从生活中发现数学问题,激发学生学习数学的兴趣。下面是小编整理的二次函数教学课件,欢迎大家阅读参考。教学目标与要求:(1)知识与技能:使学......
