实际问题与一元一次不等式教案(模板19篇)

2023-11-26 18:23:30 教案模板 下载本文

教案的编写需要根据不同教材和学生的实际情况进行调整和改进。编写教案前,教师需要对教材有一个全面的了解。以下教案是按照教学大纲和教学要求编写的,能够帮助教师达到教学目标。

实际问题与一元一次不等式教案篇一

在本节课的教学中个人的优点:

1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然。

2、精心处理教材:我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备。

3、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识梳理环节高金凤同学区分了解一元一次不等式组其实和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定。

在本节课的教学中个人的缺点:

5、在知识梳理环节有同学提出疑问:若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。

实际问题与一元一次不等式教案篇二

作与交流,涌现出多样化的解题思路。教师及时予以引导、归纳和总结,让学生感知不等式的建模。

完整的解题过程的展现,有利于培养学生有条理地思考和表达的习惯。

问题1:这个问题比较复杂。你该从何入手考虑它呢?

分组活动。先独立思考,再组内交流,然后各组汇报讨论结果。

实际问题与一元一次不等式教案篇三

3.理解一元一次不等式组应用题的一般解题步骤

一元一次不等式组的应用

在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.

(一)提出问题,引发讨论

当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.

(二)导入知识,解释疑难

1.教材内容讲解

2.探究活动

1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)

2.双基练习

1.已知方程组 有正整数解,则k的取值范围是_________.

2.若不等式组 无解,求a的取值范围.

3.当2(m-3) 时,求关于x的不等式 x-m的解集.

某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:

(1)用含x的代数式表示m.

(2)求出该次活动中获赠顾客人数及所准备的礼品数

实际问题与一元一次不等式教案篇四

问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:

(1)何时哥哥分追上弟弟?

(2)何时弟弟跑在哥哥前面?

(3)何时哥哥跑在弟弟前面?

(4)谁先跑过20m?谁先跑过100m?

你是怎样求解的?与同伴交流。

问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.

让学生体会数形结合的魅力所在。理解函数和不等式的联系。

精讲点拨。

在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。

提高学生应用数学知识解决实际问题的能力。

达标检测。

展示检测内容。

积极完成导学案上的检测内容,相互点评。

反馈学生学习效果。

知识与收获。

引导学生归纳探究内容。

学生回顾总结学习收获,交流学习心得。

学会归纳与总结。

布置作业。

教材p51.习题2.6知识技能1;问题解决2,3.

板书设计。

实际问题与一元一次不等式教案篇五

自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.

教学过程。

创设情境,导入课题,展示教学目标。

2.展示学习目标:

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣。

学生自主研学。

指出探究方向,巡回指导学生,答疑解惑。

实际问题与一元一次不等式教案篇六

教学目标:

教学过程:

新课:

这个问题较复杂,从何处入后考虑它呢?

甲商店优惠方案的`起点为购物款达___元后;。

乙商店优惠方案的起点为购物款过___元后。

我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?

(3)如果累计购物超过100元,那么在甲店购物花费小吗?

练习:

1。某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”。乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元。

(2)当学生数是多少时,两家旅行社的收费一样?

(3)就学生数x讨论哪家旅行社更优惠。

2。某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:

(1)买一只茶壶送一只茶杯;。

(2)按总价的92%付款。现有一顾客需购买4只茶壶,茶杯若干只(不少于4只)。

请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?

补充练习:

1。有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1。5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费。问这批货在月初还是月末售出好。

2。某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0。5元,超计划用水超出部分每吨收费0。8元。如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0。28元,已知每抽一吨水需成本0。07元。问该单位是用自来水公司的水合算,还是自建水泵房抽水合算。

实际问题与一元一次不等式教案篇七

3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学过程(师生活动)设计理念。

(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。

实际问题与一元一次不等式教案篇八

设购买x台电脑,如果到甲商场购买更优惠。

问题2:如何解这个不等式?

去括号,得。

去括号,得:6000+4500x-450044800x。

移项且合并,得:-300x1500。

不等式两边同除以-300,得:x5。

答:购买5台以上电脑时,甲商场更优惠。

实际问题与一元一次不等式教案篇九

2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

3、如果累计购物超过100元,又有三种情况:

(1)什么情况下,在甲商场购物花费小?

(2)什么情况下,在乙商场购物花费小?

(3)什么情况下,在两家商场购物花费相同?

握学生的创新潜能,使不同层次的学生都能得到发展。

这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质。

引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去。

实际问题与一元一次不等式教案篇十

本章的重点是一元一次不等式的解法,难点是:不等式的解集、不等式的性质及应用不等式解决实际问题的能力,特别是实际问题中的列不等式求解。

1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的.方法。至于有些课外书用“同大取大、同小取小、大小小大取中间、大大小小解不了”求解不等式,我认为增加学生的学习负担,不易于培养学生的数形结合能力。在教学中我要求学生在解不等式(组)的时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想。

2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。要注意对一元一次方程相关知识的复习,让学生进行比较、归纳,理解它与一元一次不等式的的联系与区别(特别强调“不等式两边同时乘以或除以一个负数时,不等号方向改变”),教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。

3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,陷入旧教材“繁、难、偏、旧”的模式,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。

4、各种书籍出现的应用题里面文字有的自相矛盾,教学时教师要合理利用和指导学生选取辅导书,如课本“以外”与“至少”等。

实际问题与一元一次不等式教案篇十一

[学习重点]掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.

[学习难点]寻找实际问题中的不等关系,建立数学模型.

[学习过程]。

一、 春耕。

1. 不等式的基本性质有哪些?

2、解下列不等式,并把解集在数轴上表示出来。

(1)3x2x+1;                           (2)-4x3.

二、夏耘:

这个问题较复杂,从何处入后考虑它呢?

甲商店优惠方案的起点为购物款达___元后;

乙商店优惠方案的起点为购物款过___元后.

我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(3)如果累计购物超过100元,那么在甲店购物花费小吗?

三、秋收:

1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去a市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.

(2)当学生数是多少时,两家旅行社的收费一样?

(3)就学生数x讨论哪家旅行社更优惠.

2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办法:

(1) 买一只茶壶送一只茶杯;

(2) 按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).

请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?

四、冬藏(补充练习):

1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.

2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.

3.错题回顾。

实际问题与一元一次不等式教案篇十二

知识与技能:能利用方程解决实际问题。

过程与方法:通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。

情感态度与价值观:体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。

重点:建立电话计费问题的方程模型。

难点:建立电话计费问题的方程模型。

1、导入新课。

前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。

2、对问题的初步认识。

问题1:下面表格给出的是两种移动电话的计费方式:

你了解表格中这些数字的含义吗?

师生活动:教师提问,学生思考,回答。

教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。

问题2:你觉得哪种计费方式更省钱呢?

师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:

若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;。

若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。

讨论后安排学生再次思考,可适当讨论。

3、对问题的深入探究。

问题3:通过大家的`讨论,你对电话计费问题有什么新的认识?

师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:

若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。

问题4:设一个月内用移动电话主叫为tmin(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。

师生活动:教师提出问题,学生思考并制作表格,教师巡视。

教师请学生填写下面的表格,其他同学适当补充。

观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?

师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。

一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。

教师追问:

(2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。

对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。

问题5:综合以上的分析,可以发现:

当?时,选择方式一省钱;当?时,选择方式二省钱。

师生活动:教师提出问题,学生思考并回答。

4、小结。

请学生回顾电话计费问题的探究过程,回答以下问题:

(1)探究解题的过程大致可以包含哪几个步骤?

(2)电话计费问题的核心问题是什么?

(3)在探究过程中用到了哪些方法?你又哪些收获?

5、巩固应用。

利用我们在“电话计费问题”中学会的方法,探究下面的问题。

如何根据复印的页数选择复印的地点使总价比较便宜?

师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。

6、布置作业。

课本习题1,3。

例题:

分类讨论:

总结:

实际问题与一元一次不等式教案篇十三

二、重点难点分析。

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.。

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.。

(3)同方程类似,我们把或叫做一元一次不等式的标准形式.。

实际问题与一元一次不等式教案篇十四

课后随笔学完了不等式的性质,紧接着就是实际问题与一元一次不等式,浏览了一遍实际问题与一元一次不等式这一节后,总觉得很别扭,编者意图是本节重点讨论两方面的问题:

(1)如何根据实际问题列不等式,这是贯穿全章的中心问题。

(2)如何解不等式?这节重点比较解一元一次不等式与解一元一次方程的一般步骤。

可是,学生学完了不等式的性质,只会根据不等式的性质解最简单的不等式,如6x5x+4,-2x6等等,一些复杂的不等式还不会解,因此,有必要根据不等式的性质得出移项法则,有分母的不等式利用、去括号、移项。合并同类项、系数化为一去解,就像解一元一次方程方程一样,我对教材进行了调整,先学怎样解不等式,再学列一元一次不等式解应用题,这样既降低了难度,又分散了难点,由于和一元一次方程对比着学,学生更容易接受,其实,最关键的一点是系数化为一这步,当不等式两边乘(或除)同一个负数时,不等号的方向要改变,要变成,要变成,其余和解一元一次方程一样。

实际问题与一元一次不等式教案篇十五

学习目标:

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的`解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

实际问题与一元一次不等式教案篇十六

认识一元一次不等式,会解简单的一元一次不等式;类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。

【过程与方法】。

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

【情感态度与价值观】。

感受数学知识之间的联系,提高对数学学习的兴趣。

二、教学重难点。

【重点】。

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

【难点】。

三、教学过程。

(一)引入新课。

(二)探索新知。

学生类比不等式以及一元一次方程的概念,能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

让学生回忆上节课学习的不等式x-726如何解决的,并提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。

给出不等式2(1+x)3;。

强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。

归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。

(三)课堂练习。

问题:解不等式,并在数轴上表示数集:5x+154x-1。

师生活动:学生独立思考完成,教师可适当指导,帮助学生理解不等式中的变形步骤。

(四)小结作业。

小结采用发散性问题:你今天有什么收获?

实际问题与一元一次不等式教案篇十七

《实际问题与一元一次不等式》是一节有难度的重量级实际应用课。在本节课的教学中,我先以购票问题送学生一个惊喜,让学生感受了数学魅力,激发了探究兴趣;同时又复习了不等式的性质,为解不等式要变号埋下伏笔。在较复杂的超市购物获得优惠的问题中,设计试购活动精彩纷呈,前二件商品的试购既让学生深入理解题意,体验优惠这一基本事实,又使分类讨论呼之欲出;后二件商品的试购既让学生的猜测不断清晰,又引发第二次分类,同时呈现方程与不等式,为类比提供了平台。通过修改关系符号类比方程解不等式,并进一步挑战带有中括号的不等式的解法,实现跨越发展。而最后购车问题内化前面的知识与技能,同时又探究不等式的解如何转化为实际问题的解。三个问题层次分明,一线串珠,让数学的魅力在学生心中不断加深,数学源于生活又服务于生活的感悟不断积淀。而秘籍的总结形式增加趣味的同时,加深学生建模印象。

改进之处:因在演播室录课,面对镜头与灯光,学生有些拘谨。由于时间关系,在表达本课感受时没有让更多的学生参入,结尾有些仓促。在以后的教学中,我将关注学生的学习动态,随时注意学生专注性及学习习惯的培养。

实际问题与一元一次不等式教案篇十八

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点。

正确分析实际问题中的不等关系,列出不等式组。

知识重点。

建立不等式组解实际问题的数学模型。

探究实际问题。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结。

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

实际问题与一元一次不等式教案篇十九

补充练习:1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费。问这批货在月初还是月末售出好。2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元。如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元。问该单位是用自来水公司的水合算,还是自建水泵房抽水合算。

【本文地址:http://www.daodoc.com/zuowen/15329902.html】

一元一次不等式与实际问题练习

一元一次不等式与实际问题练习题1、在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,则至少要答对几道题,其得分才会不少于80分?2、某次数学竞......

《实际问题与一元一次不等式》说课稿

《实际问题与一元一次不等式》第1课时说课稿北京市楼梓庄中学张东尊敬的各位老师:大家好!今天我说课的内容是《实际问题与一元一次不等式》第1课时,课题选自人教版《义务教育课......

实际问题与一元一次不等式说课稿

实际问题与一元一次不等式说课稿作为一名专为他人授业解惑的人民教师,很有必要精心设计一份说课稿,借助说课稿可以有效提升自己的教学能力。优秀的说课稿都具备一些什么特点呢......

实际问题与一元一次不等式教案(优质15篇)

教案的编写应该有明确的教学目标,符合学生的认知特点。教案的编写需要遵循教学内容的逻辑顺序,合理安排教学步骤。以下是一些教案范文,希望对大家教学备课工作有所帮助和启发。......

9.2实际问题与一元一次不等式——学教案

博闻强记,多思多问取法乎上,持之以恒七年级 数学学科 准印 份 包科领导签名:9.2实际问题与一元一次不等式学习目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模......

《实际问题与一元一次不等式教案(模板19篇).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
实际问题与一元一次不等式教案(模板19篇)
点击下载文档
相关专题
[教案模板]相关推荐
[教案模板]热门文章
下载全文