九年级数学上册 24.1 圆 (第三课时)教案 人教新课标版专题_新人教版三上数学教案

2020-02-29 教案模板 下载本文

九年级数学上册 24.1 圆 (第三课时)教案 人教新课标版专题由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“新人教版三上数学教案”。

24.1 圆(第3课时)

教学内容

1.圆周角的概念.

2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.

推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.

教学目标

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.

重难点、关键

1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点:运用数学分类思想证明圆周角的定理. 3.关键:探究圆周角的定理的存在.

教学过程

一、复习引入

(学生活动)请同学们口答下面两个问题. 1.什么叫圆心角?

2.圆心角、弦、弧之间有什么内在联系呢?

老师点评:(1)我们把顶点在圆心的角叫圆心角.

(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.

刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.

二、探索新知

所问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,•设球员们只能在EF在的⊙O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角.

用心

爱心

专心

现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?

(学生分组讨论)提问二、三位同学代表发言.

老师点评:

1.一个弧上所对的圆周角的个数有无数多个.

2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.

下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”

(1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示

∵∠AOC是△ABO的外角

∴∠AOC=∠ABO+∠BAO ∵OA=OB ∴∠ABO=∠BAO ∴∠AOC=∠ABO

EAOBFCwww.daodoc.comAOBC1 ∴∠ABC=∠AOC 2两侧,那么∠ABC=过程.(2)如图,圆周角∠ABC的两边AB、AC在一条直径OD的1∠AOC吗?请同学们独立完成这道题的说2ADOB明 老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,COD是△BOC的外角,•那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,此∠AOC=2∠ABC.

(3)如图,圆周角∠ABC的两边AB、AC在一条直径OD的同

C因1侧,那么∠ABC=∠AOC吗?请同学们独立完成证明.老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO=

ACDOBwww.daodoc.com11∠AOD-∠221COD=∠AOC 2因此,同弧上的圆周角是相等的.

从(1)、(2)、(3),我们可以总结归纳出圆周角定理: 现在,我如果在画一个任意的圆周角∠AB′C,•同样可证得它等于同弧上圆心角一半,在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

进一步,我们还可以得到下面的推导:

半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

用心

爱心

专心

下面,我们通过这个定理和推论来解一些题目.

例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,•只要连结AD证明AD是高或是∠BAC的平分线即可.

解:BD=CD 理由是:如图24-30,连接AD ∵AB是⊙O的直径

∴∠ADB=90°即AD⊥BC 又∵AC=AB ∴BD=CD

三、巩固练习

1.教材P92 思考题. 2.教材P93 练习.

四、应用拓展

例2.如图,已知△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半

AODwww.daodoc.comCBabc===2R. sinAsinBsinCabcabc 分析:要证明===2R,只要证明=2R,=2R,=2R,sinAsinBsinCsinAsinBsinCabc即sinA=,sinB=,sinC=,因此,十分明显要在直角三角形中进行.

2R2R2R径为R,求证: 证明:连接CO并延长交⊙O于D,连接DB ∵CD是直径

∴∠DBC=90°

又∵∠A=∠D

DOABCa,即2R= DCsinAbc 同理可证:=2R,=2R sinBsinCabc ∴===2R sinAsinBsinC 在Rt△DBC中,sinD=

五、归纳小结(学生归纳,老师点评)

本节课应掌握: 1.圆周角的概念;

BCwww.daodoc.com 2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;

3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 4.应用圆周角的定理及其推导解决一些具体问题.

六、布置作业

用心

爱心

专心

1.教材P95 综合运用9、10、11 拓广探索12、13.

2.选用课时作业设计.

用心

爱心 专心 4

人教版数学上册教学计划第三课时 (人教新课标一年级上册)

教学内容:第几(第18页)完成第22页的第7、9、10题教学目标:1、具体的情境图中,让学生学会区分基数和序数的,理解几个和第几的不同,并通过生活实例使学生充分感知无论第几都只有一个,......

人教版数学上册教学计划第三课时 (人教新课标一年级上册)

刀豆文库小编为你整合推荐8篇人教版数学上册教学计划第三课时 (人教新课标一年级上册),也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

人教新课标二年级数学上册教案

刀豆文库小编为你整合推荐6篇人教新课标二年级数学上册教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

人教新课标二年级数学上册教案

人教新课标二年级数学上册教案作为一名默默奉献的教育工作者,就难以避免地要准备教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?以下是小......

三年级上册数学第三单元教学计划 (人教新课标)

刀豆文库小编为你整合推荐5篇三年级上册数学第三单元教学计划 (人教新课标),也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《九年级数学上册 24.1 圆 (第三课时)教案 人教新课标版专题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
九年级数学上册 24.1 圆 (第三课时)教案 人教新课标版专题
点击下载文档
相关专题 新人教版三上数学教案 上册 课时 新课标 新人教版三上数学教案 上册 课时 新课标
[教案模板]相关推荐
[教案模板]热门文章
下载全文