高二数学教案_史上最全高二数学教案

2020-02-27 教案模板 下载本文

高二数学教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“史上最全高二数学教案”。

不等式专题讲解

一、复习旧知

(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.

二、新课讲解

重难点:不等式的应用

考 点: 不等式在函数最值中的应用 易混点: 不等式的运算 ◆【典型例题】

【例1】 解不等式:a1a x2解:原不等式可化为:(a1)x(2a)>0,x2即[(a-1)x+(2-a)](x-2)>0.当a>1时,原不等式与(x-若

a2)(x-2)>0同解.a1a2a2≥2,即0≤a<1时,原不等式无解;若<2,即a<0或a>1,于是a>1时原a1a1a2)∪(2,+∞).a1a2a2,2);若0<a<1,解集为(2,)a1a1不等式的解为(-∞,当a<1时,若a<0,解集为(综上所述:

当a>1时解集为(-∞,a2a2)∪(2,+∞); 当0<a<1时,解集为(2,); a1a1a2,2).a1当a=0时,解集为;当a<0时,解集为(【例2】 解关于x的不等式:log2x1log4[ax21]a0.

x1x101解:原不等式等价于ax210 ①,即x2.a2x1ax21xax2011x2由于a1,所以12,所以,上述不等式等价于

② aaxax201x2(1)当1a2时,不等式组②等价于 ax2或xa1a121此时,由于2a0,所以 2a.

aaa从而

21xa或x2. a33x(2)当a2时,不等式组②等价于所以

x,且x2. 22x

21x2(3)当a2时,不等式组②等价于 ax2或xa此时,由于2综上可知: 112,所以,2x2或xa. aa当1a2时,原不等式的解集为x2321xa或x2; a当a2时,原不等式的解集为xx,且x2;

1当a2时,原不等式的解集为x2x2或xa.

a【例3】 解关于x的不等式:4logaxlogax2a0,a1 解:原不等式等价于

4logax02logax42logax4logx20 2alogx3或logx0logx3logx0aaaa24logxlogx2aa3logax4,∴当a1时,原不等式的解集为xa3xa4

当0a1时,原不等式的解集为xa4xa3

【例4】 已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时f(m)f(n)>0.mn



(1)用定义证明f(x)在[-1,1]上是增函数;(2)解不等式:f(x+

11)<f(); 2x1(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.解:(1)证明:任取x1<x2,且x1,x2∈[-1,1],则f(x1)-f(x2)=f(x1)+f(-x2)=∵-1≤x1<x2≤1,∴x1+(-x2)≠0,由已知f(x1)f(x2)>0,又 x1-x2<0,x1x2f(x1)f(x2)·(x1-x2)

x1x2∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数.(2)解:∵f(x)在[-1,1]上为增函数,11x12131

解得:{x|-≤x<-1,x∈R} ∴1x1211x2x1(3)解:由(1)可知f(x)在[-1,1]上为增函数,且f(1)=1,故对x∈[-1,1],恒有f(x)≤1,所以要f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,即要t2-2at+1≥1成立,故t2-2at≥0,记g(a)=t2-2at,对a∈[-1,1],g(a)≥0,只需g(a)在[-1,1]上的最小值大于等于0,g(-1)≥0,g(1)≥0,解得,t≤-2或t=0或t≥2.∴t的取值范围是:{t|t≤-2或t=0或t≥2}.家庭作业

姓名__________年纪__________日期_________得分_____________ 1.不等式|ax1|a(aR)的解集是

(D)x1}

a

(A){x|x

(B){x|x1} 2a

(C){x|111} x}

(D){x|x0或0x2aa2a2.当x(1,2)时,不等式(x1)2logax恒成立,则a的取值范围是(B)

(A)[2,)

(B)(1,2)

(C)(1,2]

(D)(0,1)

3.不等式logx1(2x3)logx1(x2)成立的一个充分但不必要条件是

(B)

(A)x2

(B)x4

(C)1x2

(D)x1 4.三个数log1124,20.,20.2的大小关系是

(B)

(A)log10.22220.1

(B)log11220.20.244

(C)20.120.2log1.224

(D)20.1log12420

5.若全集IR,Axx10,Bxx22lgx则AB是(B)A.2 B.1

C.

D.xx1

6.下列命题中,正确的是(C)A.若x2x,则x0

B.若x0,则x2x C.若x0,则x2x

D.若x2x,则x0

7.若a,b是任意实数,且ab,则(D)ab A.a2b2 B.ba1

C.lgab0

D.1122

8.设0ab且ab1,则下列四数中最大的是(A)A.a2b2

B.2ab

C.a

D.9.不等式a2x22a2x40对xR恒成立,则a的取值范围为(D A.,22, B.,22, C.2,2 D.2,2

10.不等式0.52lg|x|1的解集是(B)A.1,1 B.1,00,1 C.

D.,1122,

11.解不等式:a2x1ax2ax2(a0)解:∵ ax2+ax2=(a2+1a2)ax,变形原不等式,得

a2x(a21xx1a2)a10,即(aa2)(axa2)0)

(1)当0

(2)当a>1时,a2

(3)当a=1时,a21a21a21a2,则a2

,则a-2

,无解。综上,当a≠1时,-2

12.解不等式logx3x111

解:由x10且x0,x1,得x1,原不等式等价于3x11x

3x1x1

而x1;9x1x22x1 整理,x27x1002x5 ∴2x5为所求。

高二数学教案

刀豆文库小编为你整合推荐8篇高二数学教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

高二数学教案

高二数学教案作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编为大家收集的高二数学......

最新高二数学教案

【导语】刀豆文库的会员“自由的峰”为你整理了“最新高二数学教案”范文,希望对你的学习、工作有参考借鉴作用。最新高二数学教案1教学目的:1、使理解线段的垂直平分线的性质......

高二下学期数学教案

高二下学期数学教案作为一名无私奉献的老师,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么大家知道正规的教案是怎么写的吗?以下是......

高二下学期数学教案

刀豆文库小编为你整合推荐5篇高二下学期数学教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《高二数学教案.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
高二数学教案
点击下载文档
相关专题 史上最全高二数学教案 高二 数学教案 史上最全高二数学教案 高二 数学教案
[教案模板]相关推荐
[教案模板]热门文章
下载全文