二次函数的图像与性质教学设计_二次函数图像性质教案

2020-02-27 教学设计 下载本文

二次函数的图像与性质教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数图像性质教案”。

第二章 二次函数

2.2 二次函数的图象与性质(1)

一、知识点

1.用描点法画函数 的图象

2.根据图象认识和理解二次函数 的性质

二、教学目标 知识与技能

1.能够利用描点法画函数 的图象,能根据图象认识和理解二次函数 的性质.

2.猜想并能作出  的图象,能比较它与 的图象的异同.

过程与方法:

1.经历探索二次函数 的图象的作法和性质的过程,获得利用图象研究函数性质的经验.

2.由函数 的图象及性质,对比地学习 的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维. 情感与态度:

1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.

三、重点与难点 重点:作出函数 的图象,并根据图象认识和理解二次函数 的性质.难点:由 的图象及性质对比地学习 的图象及性质,并能比较出它们的异同点.、四、温故知新(放幻灯片2)1.正比例函数,一次函数与反比例函数图象特征,请同学们谈谈它们的图象有哪些特征? 2.画函数图象的主要步骤是什么? 3.你会用描点法画二次函数 的图象吗? 活动目的:回忆、思考学习过的内容,激发学生的求知欲,为学习新知识奠定基础.五、探究新知

1.作函数 的图象(放幻灯片3、4)(1)列表:观察 的表达式,选择适当的x值,填写下表:(2)描点:在直角坐标系中描点:

(3)用光滑的曲线连接各点,便得到函数 的图象.活动目的:运用启发式教学,让学生参与的到学习过程中,加深对知识的理解,体现数学活动充满着创造与探索.2.对于二次函数 的图象(放幻灯片5、6)

(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?

(3)当0x时,随着值的增大,的值如何变化?当0x时呢?

(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.活动目的:让学生在实践中检验自己得到的结论 的图象的性质(放幻灯片7)

(1)图像形状是,开口方向是 .(2)它的图象有最 点(填高或低),最 点坐标是()(3)它是 对称图形,对称轴是 .

在对称轴左侧,y随x的增大而 ; 在对称轴的右侧,y随x的增大而 .

(4)图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的,同时也是图象的最低点,坐标为(0,0).

(5)因为图象有最低点,所以函数有最 值(填大或小),即当 时,最小y.活动目的:学生总结性质,培养学生归纳、整理知识的意识.4.做一做(放幻灯片8~10)

二次函数 图象是什么形状?先想一想,然后作出它的图象.它与二次函数 的图象有什么关系?与同伴进行交流.活动目的:学生分工合作,共同解决问题,激发学习热情.函数与的 图象的比较.(放幻灯片11)

我们观察函数2xy与2xy的图象,并对图象的性质作系统的研究,现在我们再来比较一下它们的图象的异同点.(1)开口方向不同,2xy开口向上,2xy开口向下.(2)函数值随自变量增大的变化趋势不同,在2xy图象上,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x着的增大而减小,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而增大.在2xy的图象上正好相反.(3)在2xy中y有最小值,即0x时,y最小值=0;在2xy中,y有最大值.即当0x时,y最大值=0.(4)2xy有最低点,2xy有最高点.相同点:(1)图象都是抛物线.(2)图象都与x轴交于点(0,0).(3)图象都关于y轴对称.联系:它们的图象关于x轴对称.活动目的:让学生发现处理问题的方法.6.思考拓展.二次函数的图象的开口方向跟什么有关? 对于2axy这类二次函数来说,a与其张口大小、张口方向都有关系.活动目的:通过探索问题获得解决旧知识的方法.六、课堂练习

七、课堂小结(放幻灯片12)1.二次函数2xy的图象及性质.2.二次 函数2xy与2xy的图象的异同点.八、课后作业

二次函数图像性质总结

刀豆文库小编为你整合推荐4篇二次函数图像性质总结,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

二次函数图像性质总结

二次函数图象是抛物线,是轴对称性图形。y=ax的图象是最简单的二次图像,学习也较容易。顶点坐标为(0,0),即原点;对称轴为y轴,开口由a的正负决定。一般式:y=ax^2+bx+c(a≠0,a、b、c为常数......

二次函数的性质和图像教学设计

二次函数的性质和图像教学设计一、教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第二节第二课(2.2.2)《二次函数的性质与图象》。关于《二次函数......

二次函数的性质和图像教学设计

《二次函数的性质和图像》教学设计一、设计理念:本节课遵循“探索—研究——运用“亦即“观察——思维——迁移”的三个层次要素,侧重学生的“思”、“探”、“究”的自主学习......

二次函数的性质和图像教学设计

刀豆文库小编为你整合推荐6篇二次函数的性质和图像教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《二次函数的图像与性质教学设计.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
二次函数的图像与性质教学设计
点击下载文档
相关专题 二次函数图像性质教案 教学设计 函数 图像 二次函数图像性质教案 教学设计 函数 图像
[教学设计]相关推荐
[教学设计]热门文章
下载全文