初中数学教学设计_初中数学教学设计图文
初中数学教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“初中数学教学设计图文”。
初中数学教学设计:圆、扇形、弓形
(二)教学目标:
1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;
2、培养学生观察、理解能力,综合运用知识分析问题和解决问题的能力;
3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点.
教学重点:扇形面积公式的导出及应用.
教学难点:对图形的分解和组合、实际问题数学模型的建立.
教学活动设计:
(一)概念与认识
弓形:由弦及其所对的弧组成的图形叫做弓形.
弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.
(二)弓形的面积
提出问题:怎样求弓形的面积呢?
学生以小组的形式研究,交流归纳出结论:
(1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;
(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;
(3)当弓形弧是半圆时,它的面积是圆面积的一半.
理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.
(三)应用与反思
练习:
(1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;
(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.
(学生独立完成,巩固新知识)
例
3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m)
教师引导学生并渗透数学建模思想,分析:
(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?
(2)求截面上有水的弓形的面积为你提供什么信息?
(3)扇形、三角形、弓形是什么关系,选择什么公式计算?
学生完成解题过程,并归纳三角形OAB的面积的求解方法.
反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.
例
4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求
与
围成的新月牙形ACED
2的面积S.
解:∵
有∵,,∴ .
组织学生反思解题方法:图形的分解与组合;公式的灵活应用.
(四)总结
1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;
2、应用弓形面积解决实际问题;
3、分解简单组合图形为规则圆形的和与差.
(五)作业 教材P183练习2;P188中12.
圆、扇形、弓形的面积(三)
教学目标:
1、掌握简单组合图形分解和面积的求法;
2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;
3、渗透图形的外在美和内在关系.
教学重点:简单组合图形的分解.
教学难点:对图形的分解和组合.
教学活动设计:
(一)知识回顾
复习提问:
1、圆面积公式是什么?
2、扇形面积公式是什么?如何选择公式?
3、当弓形的弧是半圆时,其面积等于什么?
4、当弓形的弧是劣弧时,其面积怎样求?
5、当弓形的弧是优弧时,其面积怎样求?
(二)简单图形的分解和组合1、图形的组合 让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.
2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积.
以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用.
归纳交流结论:
方案1.S阴=S正方形-4S空白.
方案
2、S阴=4S瓣=4(S半圆-S△AOB)
=2S圆-4S△AOB=2S圆-S正方形ABCD
方案
3、S阴=4S瓣=4(S半圆-S正方形AEOF)
=2S圆-4S正方形AEOF =2S圆-S正方形ABCD
方案
4、S阴=4 S半圆-S正方形ABCD
„„„„„
反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律.
练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?
分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.
解:连结AO,设P为其中一个三等分点,连结PA、PO,则△POA是等边三角形.
.
∴
说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.
练习2:教材P185练习第1题
例
5、已知⊙O的半径为R.
(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;
(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).
例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能力.
说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值.从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积
(三)总结
1、简单组合图形的分解;
2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.
3、进一步理解了正多边形和圆的关系定理.
(四)作业 教材P185练习2、3;P187中8、11. 探究活动
四瓣花形
在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图(1)所示.
再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图(12)所示.
探讨:(1)两图中的圆弧均被互分为三等份.
(2)两朵“花”是相似图形.
(3)试求两“花”面积
提示:分析与解(1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°.
从而,∠ADP=30°.
同理∠CDQ=30°.故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分点.
由对称性知,四段弧均被三等分.
如果证明了结论(2),则图(12)也得相同结论.
(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图(1)的缩影.显然两“花”是相似图形;其相似比是AB ﹕EF =
﹕1.
(3)花形的面积为:,
初中数学教学设计初中数学教学设计教案设计者:南康市三益中学 张建 学科:数学 年级:八年级课题名称: 完全平方公式(1)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计......
一元二次方程根的判别式一、教学内容分析“一元二次方程的根的判别式”一节,在《华师大版》的新教材中是作为阅读材料的。从定理的推导到应用都比较简单。但是它在整个中学数......
刀豆文库小编为你整合推荐4篇数学初中教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
初中数学教学设计教案设计者:南康市三益中学张建 学科:数学 年级:八年级 课题名称: 完全平方公式(1)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出......
初中数学教学设计在教学工作者开展教学活动前,时常要开展教学设计的准备工作,教学设计是实现教学目标的计划性和决策性活动。教学设计应该怎么写才好呢?以下是小编为大家整理的......
