2.1 求解二元一次方程组(第1课时)教学设计_第一课时阅读教学设计
2.1 求解二元一次方程组(第1课时)教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“第一课时阅读教学设计”。
第五章 二元一次方程组
2.求解二元一次方程组(第1课时)
一.学生起点分析
学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二元一次方程、二元一次方程组及其解等基本概念,具备了进一步学习二元一次方程组解法的基本能力,会通过列一元一次方程解应用题,能通过分析找出题中的等量关系列出二元一次方程组.学生活动经验基础:有同学间相互交流合作、自主探索的经验,有在活动过程中总结经验、归纳知识点的经验.二.教学任务分析 《二元一次方程组的解法》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》的第二节,要求学生能利用消元思想熟练的解二元一次方程组,本节体现的消元方法有代入消元法、加减消元法,教材安排了2个课时分别完成.本节课为第1课时.基于学生对二元一次方程及二元一次方程组的基本概念理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程组的解法——代入消元法.代入消元法是解二元一次方程组的基本方法之一,它要求从两个方程中选择一个系数比较简单的方程,将它转换成用含有一个未知数的代数式表示另一个未知数的形式,然后代入另一个方程,求出这个未知数的值,最后将这个未知数的值代入已变形的那个方程,求出另一个未知数的值.在求出方程组的解之后,可以对求出的解进行检验,这样可以防止和纠正方程变形和计算过程中可能出现的错误.二元一次方程组的解法,其本质思想是消元,体会“化未知为已知”的化归思想.教学目标:(1)会用代入消元法解二元一次方程组;(2)了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.教学重点:用代入消元法解二元一次方程组.教学难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.三.教学过程设计::第一环节:情境引入;第二环节:探索新知;第三环节:巩固新知;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业.第一环节:情境引入 内容:教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.xy8,设他们中有x个成人,y个儿童,我们得到了方程组成人和
5x3y34.x5,儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验是
y3不是方程xy8和方程5x3y34的解,从而得知这个解既是xy8的x5,解,也是5x3y34的解,根据二元一次方程组的解的定义,得出是
y3xy8,方程组的解.所以成人和儿童分别去了5人和3人.5x3y34提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?
第二环节:探索新知 内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?(由学生独立思考解决,教师注意指导学生规范表达)
解:设去了x个成人,则去了(8x)个儿童,根据题意,得:
5x38x34解得:x5
将x5代入8x, 解得:8-5=3.答:去了5个成人,3个儿童.在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?
(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)
1.列二元一次方程组设有两个未知数:x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8x)个.因此y应该等于(8x).而由二元一次方程组的一个方程xy8,根据等式的性质可以推出y8x.2.发现一元一次方程中5x3(8x)34与方程组中的第二个方程5x3y34相类似,只需把5x3y34中的“y”用“8x”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同
xy8,①一个未知量.所以将中的①变形,得y8x③,我们把
5x3y34②即将②中的y用8x代替,这样就有5x38x34.y8x代入方程②,“二元”化成“一元”.教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)
xy8,解:
5x3y34.由①得:y8x.③ 将③代入②得:
5x38x34解得:x5..把x5代入③得:y3.x5,所以原方程组的解为:
y3.(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)
下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.(放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.)
第三环节:巩固新知 内容: 1.例:解下列方程组:
3x2y14,2x3y16,(1)(2)
xy3;x4y13.(根据学生的情况可以选择学生自己完成或教师指导完成)(1)解:将②代入①,得:3y32y14.解得:y1.把y1代入②,得:x4.x4,所以原方程组的解为:
y1.(2)由②,得:x134y.③ 将③代入①,得:2134y3y16.解得:y2.将y=2代入③,得:x5.x5,所以原方程组的解是
y2.(⑵题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单.让学生在解题中进行思考)
(教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解.促使学生进一步理解方程组解的含义以及学会检验方程组解的方法.)
2.思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)
⑴给这种解方程组的方法取个什么名字好? ⑵上面解方程组的基本思路是什么? ⑶主要步骤有哪些?
⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?
(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.第四环节:练习提高内容: 1.教材随堂练习
2.补充练习:用代入消元法解下列方程组:
3x2y7,x2y4,3x4y19,(1)(2) ⑶x3
y0.2xy3;x2y3;2(注:[2]题可以用整体代入法来解,把第二个方程变为2y3x,再将它代入第一个方程,得
3x2x319;[3]题分数线有括号功能;[4]题如果有时间,学生学有余力可作为补充题目.)
第五环节:课堂小结
内容:师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.第六环节:布置作业
1.课本习题5.2 2.解答习题5.1第3题 3.预习下一课内容
第五章 二元一次方程组2.求解二元一次方程组(第2课时)成都市盐道街中学实验学校邓国伟 刘志燕四川师大附中陈卫军一、学生起点分析学生的知识技能基础:在学习本节之前,学生已经......
初三代数教案 第十二章:一元二次方程 第20课时:由一个二元一次方程和 一个二元二次方程组成的方程组(一) 教学目标:1、使学生了解二元二次方程概念、二元二次方程的一般形式、二......
二元一次方程组(第一课时)教学设计一、教学目标(-)知识目标1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数......
二元一次方程组教学设计在教学工作者开展教学活动前,有必要进行细致的教学设计准备工作,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设......
二元一次方程组教学设计作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。教学设计应该怎么写呢?下面是小编收集整......
