高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和_高中数学微课教案案例
高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“高中数学微课教案案例”。
等差数列的前n项和
教材分析
等差数列的前n项和是数列的重要内容,也是数列研究的基本问题.在现实生活中,等差数列的求和是经常遇到的一类问题.等差数列的求和公式,为我们求等差数列的前n项和提供了一种重要方法.
教材首先通过具体的事例,探索归纳出等差数列前n项和的求法,接着推广到一般情况,推导出等差数列的前n项和公式.为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前n项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前n项和公式解决问题.这节内容重点是探索掌握等差数列的前n项和公式,并能应用公式解决一些实际问题,难点是前n项和公式推导思路的形成.
教学目标
1.通过等差数列前n项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力.
2.理解和掌握等差数列的前n项和公式,体会等差数列的前n项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力.
3.在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法.
任务分析
这节内容主要涉及等差数列的前n项公式及其应用.
对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子1+2+3+……+100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第k项与倒数第k项的和等于首项与末项的和这个规律,进而发现求等差数列前n项和的一般方法,这样自然地过渡到一般等差数列的求和问题.对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前n项和与等差数列的项、项数、公差之间的关系.为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法.特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式.对于等差数列前n项和公式和二次函数之间的联系,可引导学生拓展延伸.
教学设计
一、问题情景
1.在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“1+2+3+…+100=?”时,很快地就算出了结果.他是怎么算出来的呢?他发现1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=101×50=5050.
2.受高斯算法启发,你能否求出1+2+3+…+n的和.
3.高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前n项和?
二、建立模型
1.数列的前n项和定义
对于数列{an},我们称a1+a2+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+…+an.
2.等差数列的求和公式
(1)如何用高斯算法来推导等差数列的前n项和公式? 对于公差为d的等差数列{an}:
Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①
依据高斯算法,将Sn表示为Sn=an+(an—d)+(an—2d)+…+[an—(n—1)d].
②
由此得到等差数列的前n项和公式
小结:这种方法称为反序相加法,是数列求和的一种常用方法.
(2)结合通项公式an=a1+(n—1)d,又能得怎样的公式?
(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质? 学生讨论后,教师总结:相同点是利用二者求和都须知道首项a1和项数n;不同点是前者还须要知道an,后者还须要知道d.因此,在应用时要依据已知条件合适地选取公式.公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第k项与倒数第k项的和都等于首、末两项之和,后者反映了等差数的前n项和是关于n的没有常数项的“二次函数”.
三、解释应用 [例 题]
1.根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn.
(1)a1= —4,a8= —18,n=8.(2)a1=14.5,d=0.7,an=32.
注:恰当选用公式进行计算.
2.已知一个等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?
分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于a1与d的关系式,它们都是关于a1与d的二元一次方程,由此可以求得a1与d,从而得到所求前n项和的公式.
解:由题意知
注:(1)教师引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或者a1,n,d的方程,使学生能把方程思想和前n项和公式相结合,再结合通项公式,对a1,d,n,an及Sn这五个量知其三便可求其二.
(2)本题的解法还有很多,教学时可鼓励学生探索其他的解法.例如,3.2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从20XX年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,20XX年该市用于“校校通”工程的经费500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从20XX年起的未来10年内,该市在“校校通”工程中的总投入是多少?
教师引学生分析:每年“校校通”工程的经费数构成公差为50的等差数列.问题实质是求该数列的前10项的和.
解:根据题意,从2001~20XX年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列{an},表示从20XX年起各年投入的资金,其中,a1=500,d=50.
那么,到20XX年(n=10),投入的资金总额为
答:从2001~20XX年,该市在“校校通”工程中的总投入是7250万元. 注:教师引导学生规范应用题的解题步骤.
4.已知数列{an}的前n项和Sn=n2+
n,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?
解:根据
由此可知,数列{an}是一个首项为,公差为2的等差数列.
思考:一般地,数列{an}前n项和Sn=An2+Bn(A≠0),这时{an}是等差数列吗?为什么?
[练 习]
1.一名技术人员计划用下面的办法测试一种赛车:从时速10km/h开始,每隔2s速度提高20km/h.如果测试时间是30s,测试距离是多长?
2.已知数列{an}的前n项的和为Sn=
n2+
n+4,求这个数列的通项公式.
3.求集合M={m|m=2n—1,n∈N*,且m<60}的元素个数,并求这些元素的和.
四、拓展延伸
1.数列{an}前n项和Sn为Sn=pn2+qn+r(p,q,r为常数且p≠0),则{an}成等差数列的条件是什么?
2.已知等差数列5,4,3,…的前n项和为Sn,求使Sn最大的序号n的值.
分析1:等差数列的前n项和公式可以写成Sn=以看成函数y=x2+(a1-
n2+(a1-)n,所以Sn可)x(x∈N*).当x=n时的函数值.另一方面,容易知道Sn关于n的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值.
解:由题意知,等差数列5,4,3,…的公差为-,所以
于是,当n取与最接近的整数即7或8时,Sn取最大值.
分析2:因为公差d= -<0,所以此数列为递减数列,如果知道从哪一项开始它后边的项全为负的,而它之前的项是正的或者是零,那么就知道前多少项的和最大了.即使然后从中求出n.
点 评
这篇案例从具体的实例出发,引出等差数列的求和问题,在设计上,设计者注意激发学生的学习兴趣和探究欲望,通过等差数列求和公式的探索过程,培养学生观察、探索、发现规律、解决问题的能力.
对例题、练习的安排,这篇案例注意由浅入深,完整,全面.拓展延伸的设计有新意,有深度,符合学生的认识规律,有利于学生理解、掌握这节内容.
就总体而言,这篇案例体现了新课程的基本理念,尤其关注培养学生的数学思维能力和创新能力.另外,这篇案例对于继承传统教学设计注重“双基”、关注学生的落实,同时注意着眼于学生的全面发展,有比较好的体现。
本节内容选自人教版《普通高中课程标准实验教科书·数学·必修5》的〈第二章§2.3 等差数列的前n项和 〉的第一课时:等差数列的前n项和公式的推导及简单应用。它是在学生已经......
高二数学——必修5学案2.3.1等差数列的前n项和(1)【创设情境】1.在等差数列an中若mnpq,则.2.一堆钢管共10层,第一层钢管数为4,且下一层比上一层多一根,问一共有多少根钢管?3.探索:在等差......
课题: §2.3 等差数列的前n项和授课类型:新授课(第1课时)●教学目标知识与技能:掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的......
高中数学《等差数列的前n项和》说课稿作为一位杰出的教职工,就难以避免地要准备说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面......
等差数列的前n项和教学设计罗雪梅一、教学内容分析本节课教学内容是《普通高中课程标准实验教科书·数学(5)》(人教A版)中第二章的第三节“等差数列的前n项和”(第一课时).本节课主......
