等比数列的概念说课稿(优秀18篇)

2023-12-06 09:23:07 教学课件 下载本文

读书笔记是读者在阅读一本书后,通过记录自己的思考、感悟和体会,总结书中内容的产物。学会应对压力,保持心理健康是每个人需要重视的事情。我们为大家准备了一些有关总结的名人名言,希望能够激发大家的思考和灵感。

等比数列的概念说课稿篇一

2、从学生认知角度看。

3、学情分析。

4、重点、难点。

教学重点:公式的推导、公式的特点和公式的运用、

教学难点:公式的推导方法和公式的灵活运用、

知识与技能目标:

过程与方法目标:

情感与态度价值观:

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题。

2、师生互动,探究问题。

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)。

3、类比联想,解决问题。

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导、

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础、)。

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)。

4、讨论交流,延伸拓展。

等比数列的概念说课稿篇二

一、说课内容:

九年级数学下册第27章第一节的二次函数的概念及相关习题(华东师范大学出版社)。

二、教材分析:

1、教材的地位和作用。

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的'基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

3、教学重点:对二次函数概念的理解。

4、教学难点:抽象出实际问题中的二次函数关系。

三、教法学法设计:

1、从创设情境入手,通过知识再现,孕伏教学过程。

2、从学生活动出发,通过以旧引新,顺势教学过程。

3、利用探索、研究手段,通过思维深入,领悟教学过程。

四、教学过程:

(一)复习提问。

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)。

2.它们的形式是怎样的?

(y=kx+b,ky=kx,ky=,k0)。

【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.

(二)引入新课。

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。

例1、(1)圆的半径是r(cm)时,面积与半径之间的关系是什么?

解:s=0)。

解:y=x(20/2-x)=x(10-x)=-x2+10x(0。

解:y=100(1+x)2。

=100(x2+2x+1)。

=100x2+200x+100(0。

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

(三)讲解新课。

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c(a0,a,b,c为常数)的函数叫做二次函数。

1、强调形如,即由形来定义函数名称。二次函数即y是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在y=ax2+bx+c中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)。

3、为什么二次函数定义中要求a?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)。

4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.

5、b和c是否可以为零?

由例1可知,b和c均可为零.

若b=0,则y=ax2+c;。

若c=0,则y=ax2+bx;。

若b=c=0,则y=ax2.

注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.

判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

(1)y=3(x-1)2+1(2)s=3-2t2。

(3)y=(x+3)2-x2(4)s=10r2。

(5)y=22+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)。

(四)巩固练习。

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;。

(2)设这个直角三角形的面积为scm2,其中一条直角边为xcm,求s关。

于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为scm2,体积为vcm3。

(1)分别写出s与x,v与x之间的函数关系式子;。

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

五、评价分析。

本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。

文档为doc格式。

-->

-->。

等比数列的概念说课稿篇三

等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。

第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作用决定的。

1、数列有着广泛的实际应用。例如产品的规格设计、储蓄、分期付款的有关计算等。

2、数列有着承前启后的作用。数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。

3、数列是培养提高学生思维能力的好题材。学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。

本节课既是本章的重点,同时也是教材的重点。等比数列前n项和前面承接了数列的定义、等差数列的知识内容,又是后面学习数列求和、数列极限的基础。

本节的重点是等比数列前n项和公式及应用,难点是公式的推导。

二、教学目标。

1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。

2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。

3、思想目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。

三、教学程序设计。

1、导言:

这样引入课题有以下三点好处:

(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。

(2)故事内容紧扣本节课教学内容的主题与重点。

(3)有利于知识的迁移,使学生明确知识的现实应用性。

2、讲授新课:

本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。

依据如下:

(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。

(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。

(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。

突破难点方法:

(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。

(2)值得一提的是公式的证明还有两种方法:

方法二:由等比数列的定义得:运用连比定理,

后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。

等比数列前n项和公式及应用是本节课的重点内容。

依据如下:

(1)新大纲中有较高层次的要求。

(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。

(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。

突出重点方法:

(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。

(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。

(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。

四、习题训练。

本节课设置如下两种类型的习题:

1.中知三求二的解答题;。

2.实际应用题.

这样设置主要依据:

(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。

(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。

(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性。

五、策略、方法与手段。

根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。

案例为浅层次要求,使学生有概括印象。

公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。

应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。

其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。

在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。

六、个人见解。

在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。

文档为doc格式。

-->

-->。

等比数列的概念说课稿篇四

《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。

二、学情分析。

在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运。

用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。

三、教学目标分析:

知识与技能目标:

(1)能够推导出等比数列的前n项和公式;

(2)能够运用等比数列的前n项和公式解决一些简单问题。

过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求。

过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。

情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。

四、重难点的确立。

《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。

五、教学方法。

为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。

六、教学过程。

为达到本节课的教学目标,我把教学过程分为如下6个阶段:

1、创设情境:

2、探究问题,讲授新课:

根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。

3、例题讲解:

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:

1)例1是公式的直接应用,目的是让学生熟悉公式会合理的选用公式。

2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.4.形成性练习:

练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。

5.课堂小结。

本节课的小结从以下几个方面进行:(1)等比数列的前n项和公式。

(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。

6.作业布置。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的`目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。

等比数列的概念说课稿篇五

大家好,今天我说课的题目是函数的概念,将从以下七个方面来进行说课。

函数的概念是人教a版实验教科书必修一第三章第一节的内容,我们在初中阶段学过的一次函数反比例函数二次函数为我们在高中学习函数的概念,这一内容进行了铺垫,而函数的概念又为后续学习函数的性质做了铺垫,因此,本节课的内容在整个教科书中起着承上启下的作用。

在学琴方面,从知识和能力两方面入手,目前学生处于高一阶段,在中学已经初步探讨了函数的相关问题,为重新定义函数提供了理论基础,并且通过以前的学习,同学们已经具备了分析,推理和概括的能力,并具备了学习函数概念的基本能力。

根据课程标准,

教学。

内容,及学生学情,我制定了如下三维教学目标,知识与技能方面,理解函数的概念能对具体函数指出定义域值域对应法则能够正确,使用区间符号表示,某些函数的定义域和值域,过程与方法方面,通过实例进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上,用集合与对应语言来刻画函数,体会对应关系在刻画函数概念中的进步作用,加深数学思想方法,情感态度,价值观方面,在自主探究中感受到成功的喜悦,激发数学学习兴趣。

根据课程标准,教学内容教学重点为,函数的模型化思想函数的三要素,根据教学内容,学生学情,教学难点为函数符号fx的含义,函数的定义,域值域和区间表示,从具体实例中抽象出函数概念。

多样化的教学方法是突破重难点的关键,我们因此本节课我将采用,领导发现练习巩固分组讨论的教学方法,充分调动学生学习的积极性,主动性,使课堂气氛更加活跃,培养学生自主学习,动手探究的能力,培养学生对数学知识的应用能力和意识,提高学生分析问题和解决问题的能力,培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣。

根据上面的教学方法以及新课程倡导的自主合作探究的学习方式,在本节课的教学中,教会学生动手尝试,仔细观察开动脑筋分析问题,这样有利于学生发挥学习的主动性,使学生的学习过程成为教师引导下再创造过程,并使学生从中体会到学习的乐趣,下面我将着重谈一谈我对教学过程的设计,首先,创设情境引入课题,例如,正方形的周长也要与边长x的对应关系是l=4x,而且对于每一个x都有唯一的l与之对应,所以l是x的函数,这个函数与y=4x相同吗?又如你能用已有的知识判断y=x与y=x/x^2是否相同吗?要解决这些问题,就需要进一步学习函数的概念,此部分我设计的意图是利用初中所学知识引入课题,由熟悉到陌生,便于学生理解与接受,符合学生逻辑思维,接下来,引导探求以书上的四个实例高速列车时间与路程关系,电器维修工人工作天数与工资的关系,时间与空气质量指数之间的关系,以及八五计划以来,我国城镇居民的恩格尔系数与时间的变化关系,这四个实力为例,让同学们探究其对应变量之间的关系,以及变量的变化范围,目的是让学生体会函数,是描述客观事物变化规律的数学模型的思想,第三部分,归纳。

总结。

形成知识,让学生总结第一到第四中的函数有哪些共同特征,由此概括出函数概念的本质特征,设计意图为使学生进行分组讨论,学会分析归纳共同点,在分组讨论的过程中,体会到团队协作的精神,第四部分变式训练巩固知识,思考反比例,函数y=k/x的定义域值域和对应关系各是什么?请用函数定义描述这个函数,这是为了通过变式使同学们灵活运用所学知识,有举一反三的,能更加使学生巩固所学知识,第五部分,深化知识习题训练,为了巩固所学知识,激发学生的求知欲,我将布置三道不同类型,不同难度的做作业,以满足不同层次的学生需求,第一题,第二题为基础题,第三题为选做题,习题训练复习巩固很重要,树立夯实基础目标,坚持事求是,脚踏实地。

基于以上教学过程,我设计了如下板书,我的说课到此完毕,谢谢大家,敬请各位老师批评指正。

-->。

等比数列的概念说课稿篇六

(2)过程与方法:在定积分概念形成的过程中,培养学生的抽象概括能力和探索提升能力。

【教学重点】:

理解定积分的概念及其几何意义,定积分的性质【教学难点】:

3.教学用具。

多媒体。

4.标签。

教学过程。

课堂小结。

定积分的定义,计算定积分的“四步曲”,定积分的几何意义,定积分的性质。

-->

-->。

等比数列的概念说课稿篇七

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

二、教学目标。

理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

三、重难点分析确定。

一、教学基本思路及过程。

本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。

二、学情分析。

一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。

三、教法、学法。

1、本节课采用的方法有:

直观教学法、启发教学法、课堂讨论法。

2、采用这些方法的理论依据:

我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。

等比数列的概念说课稿篇八

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2、从学生认知角度看。

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3、学情分析。

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4、重点、难点。

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析。

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转。

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

三、过程分析。

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题。

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)。

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

3、类比联想,解决问题。

这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)。

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)。

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

4、讨论交流,延伸拓展。

首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

6、例题讲解,形成技能。

设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

7、总结归纳,加深理解。

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

设计意图:以此培养学生的口头表达能力,归纳概括能力。

8、故事结束,首尾呼应。

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

9、课后作业,分层练习。

必做:p129练习1、2、3、4。

选作:

设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

四、教法分析。

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

五、评价分析。

本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

等比数列的概念说课稿篇九

本节课是高中数学(北师大版必修5)第一章第3节第二课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也为以后学数列的求和,数学归纳法等做好铺垫。而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养,如在“分期付款”等实际问题中也经常涉及到。本节以数学文化背境引入课题有助于提升学生的创新思维和探索精神,是提高数学文化素养和培养学生应用意识的良好载体。

2.学情分析。

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。教学对象是高二理科班的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不完全。

二.教学目标。

依据新课程标准及教材内容,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:

1、知识与技能目标:理解等比数列前n项和公式推导方法;掌握等比数列前n项和公式并能运用公式解决一些简单问题。

2.过程与方法目标:感悟并理解公式的推导过程,感受公式探求过程所蕴涵的从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质,初步提高学生的建模意识和探究、分析与解决问题的能力。

3、情感与态度目标:通过经历对公式的探索过程,对学生进行思维严谨性的训练,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美和数学的严谨美。

三.重点,难点。

教学重点:等比数列前“等比数列的前n项和”项和公式的推导及其简单应用。

教学难点:公式的推导思想方法及公式应用中q与1的关系。

四.教学方法。

启发引导,探索发现,类比。

五.教学过程。

(一)借助数学文化背境提出问题。

等比数列的概念说课稿篇十

教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

二、教学目标。

理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

三、重难点分析确定。

一、教学基本思路及过程。

本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。

二、学情分析。

一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。

三、教法、学法。

1、本节课采用的方法有:

直观教学法、启发教学法、课堂讨论法。

2、采用这些方法的理论依据:

我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。

等比数列的概念说课稿篇十一

(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。

(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的素质。

(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的态度。

等比数列的概念说课稿篇十二

1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及应用。

2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。

3、思想目标:培养学生学习数学的。积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。

等比数列的概念说课稿篇十三

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析。

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析。

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析。

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法。

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

六、教学过程。

(一)创设情景,引入新课。

情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。

名次(得分)。

情景3:某市一天24小时内的气温变化图:(图略)。

提问(1):这三个例子中都涉及到了几个变化的量?(两个)。

提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)。

提问(3):这样的关系在初中称之为什么?(函数)引出课题。

[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

(二)探索新知,形成概念。

1、引导分析,探求特征。

思考:如何用集合的语言来阐述上述三个问题的共同特征?

[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)。

[设计意图]引导学生观察,培养观察问题,分析问题的能力。

提问(5):两个集合的元素之间具有怎样的关系?(对应)。

及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。

提问(6):现在你能从集合角度说说这三个问题的共同点吗?

[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。

上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

3、探求定义,提出注意。

提问(7):你觉得这个定义中应注意哪些问题?

[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

4、例题剖析,强化概念。

例1、判断下列对应是否为函数:

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1);(2)y=x-1;(3);[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

例3、试求下列函数的定义域与值域:

[设计意图]让学体会理解函数的三要素。

5、巩固练习,运用概念。

书本练习p24:1,2,3,4。

6、课堂小结,提升思想。

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

七、教学评价。

1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。

2、为使课堂形式更加丰富,也可将某些问题改成判断题。

4。本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。

等比数列的概念说课稿篇十四

“棱锥”这节教材是《立体几何》的第2.2节它是在学生学习了直线和平面的基础知识,掌握若干基本图形以及棱柱的概念和性质的基础上进一步研究多面体的又一常见几何体。它既是线面关系的具体化,又为以后进一步学习棱台的概念和性质奠定了基础。因此掌握好棱锥的概念和性质尤其是正棱锥的概念和性质意义非常重要,同时,这节课也是进一步培养高一学生的空间想象能力和逻辑思维能力的重要内容。

本节课的主要教学内容是棱锥、正棱锥的概念和性质以及运用正棱锥的性质解决有关计算和证明问题。通过观察具体几何体模型引出棱锥的概念;通过棱柱与棱锥类比引入正棱锥的概念;通过对具体问题的研究,逐步探索和发现正棱锥的性质,从而找到解决正棱锥问题的一般数学思想方法,这样做,学生会感到自然,好接受。对教材的内容则有所增减,处理方式也有适当改变。

根据教学大纲的要求,本节教材的特点和高一学生对空间图形的认知特点,我把本节课的教学目的确定为:

(1)通过棱锥,正棱锥概念的教学,培养学生知识迁移的'能力及数学表达能力;

(2)领会应用正棱锥的性质解题的一般方法,初步学会应用性质解决相关问题;

(4)进行辩证唯物主义思想教育,数学审美教育,提高学生学习数学的积极性。

对于高一学生来说,空间观念正逐步形成。而实际生活中,遇到的往往是正棱锥,它的性质用处较多。因此,本节课的教学重点是通过对具体问题的分析和探索,自然而然地引出正棱锥的最重要性质及其实质;而如何将空间问题转化为平面问题来解决?本节课则通过抓住正棱锥中的基本图形这一难点实现突破,教学的关键是正确认识正棱锥的线线,线面垂直关系。

类比联想、研究探讨、直观想象、启发诱导、建立模型、学会应用、发展潜能、形成能力、提高素质。

由于本节课安排在立体几何学习的中期,正是进一步培养学生形成空间观念和提高学生逻辑思维能力的最佳时机,因此,在教学中,一方面通过电教手段,把某些概念,性质或知识关键点制成了投影片,既节省时间,又增加其直观性和趣味性,起到事半功倍的作用;另一方面,在教学中并没有采取把正棱锥性质同时全部讲授给学生的做法,而是通过具体问题的分析与处理,将正棱锥最重要的性质这一知识点发现的全过程逐步展现给学生,让学生体会知识发生、发展的过程及其规律,从而提高学生分析和解决实际问题的能力。

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据立体几何教学的特点,这节课主要是教给学生“动手做,动脑想;严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”,“思”有所“得”,“练”有所“获”。学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,才能适应素质教育下培养“创新型”人才的需要。

(可将金字塔,帐篷的图片以及不同棱锥的模型依次出示给学生)。

将现实生活的实例抽象成数学模型,获得新的几何体――棱锥。(板书课题)。

请同学们描述一下棱锥的本质特征?(学生观察模型,提示学生可以从底面,侧面的形状特点加以描述)。

结论:(1)有一个面是多边形;

(2)其余各面是三角形且有一个公共顶点。

由满足(1)、(2)的面所围成的几何体叫做棱锥。

(设计意图:由观察具体事物,经过积极思维,归纳、抽象出事的本质属性,形成概念,培养学生抽象思维能力,提高学习效果。)。

――棱锥的顶点。

――棱锥的侧棱。

――棱锥的底面。

棱锥的高――――。

观察图1:依次逐个介绍棱锥各个部分。

名称及表示法。表示法:棱锥s-abcde。

或棱锥s-ac。与棱柱相似,棱锥可以按。

底面多边形的边数分为三棱锥,四棱锥、

五棱锥,···,n棱锥。

(设计意图:从简处理棱锥的表示法,

分类等,为后面重点解决正棱锥的性质问。

题节省时间。)。

由于实际生活中,遇到的往往是一种。

特殊的棱锥――正棱锥,它的性质用处较多。

通过对比正棱柱的定义,让学生描述正棱锥。

(拿出各式各样的棱锥模型让学生辨认)。

讨论:底面是正多边形的棱锥对吗?联想正棱柱的定义,棱柱补充几点后才是正棱柱?

结论:底面是正多边形,并且顶点在底面射影是底面中心。为什么?

(设计意图:采用观察、联想、类比、猜想、发现的方法引出正棱锥的定义比课本直接给出显得自然,学生好接受)。

正棱锥的顶点在底面的射影是底面下多边形中心,这是正棱锥的本质特征。它决定了正棱锥的其他性质。下面以正五棱锥为例,请同学们说出其侧棱,各侧面有何性质?(将图2出示给学生)。

结论:各棱相等,各侧面是全等的等腰三角形。

为什么?

(学生口答证明)(略)。

如果我们把等腰三角形底边上的高叫做正棱锥。

的斜高,请在图2中作出两条斜高。(学生作出。)(略)。

结论:两条斜高相等。为什么?(学生回答)。

想一想:正棱锥的斜高与高有什么关系?

结论:斜高大于高,为什么?(可启发学生联系。

垂线段,斜线段的有关知识,然后回答)。

小结:对于一般棱锥其侧面不一定是等腰三角形。棱锥的高是指顶点到底面的距离,垂足可以在底面多边形内,也可以在底面多边形外,我们刚才所得到的性质都是对正棱锥而言的。

(设计意图:再次让学生领会类比、观察、猜想等合情合理得到正棱锥的性质之一并加以证明,培养学生的直觉思维能力的同时,训练学生数学思维的严谨性。)。

等比数列的概念说课稿篇十五

在职人才引进:

业务定义。

在职人才引进申报:符合当在职人才引进申报政策的人员,可办理在职人才引进申报。具体参看当政策。

政策依据:

深圳市人才引进实施办法(深府办函[2013]37号)《深圳市人才引进综合评价指标及分值表》(深人社规〔2013〕5号)。

在职人才引进的条件:

(一)符合以下基本条件,且人才引进积分分值达到100分的,可以申请办理人才引进手续:

1.年龄在18周岁以上,48周岁以下;

2.身体健康;

3.已在我市办理居住证和缴纳社保;

4.符合《深圳经济特区人口与计划生育条例》的规定;

5.未参加国家禁止的组织及活动,无刑事犯罪记录。

(二)符合上款基本条件的第2、4、5项,且符合以下条件之一,可直接申请办理人才引进手续:

1.两院院士;

6.取得《深圳市出国留学人员资格证明》,且年龄不超过48周岁的留学回国人员。

(三)根据我市户籍迁入规定,以下人员申请人才引进年龄上限可放宽:

本款第2至5项所规定人员,须在最近连续3个纳税内具备与申请事由相适应的身份资格;纳税额超过以上规定纳税额一倍以上的,其年龄可放宽至55周岁。

(四)市政府对高层次专业人才及其配偶、获得特殊奖项或表彰人员、投资纳税人员、随军家属、机关事业单位或驻深单位人员等引进另有规定的,按其规定执行。

等比数列的概念说课稿篇十六

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4.重点、难点。

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

知识与技能目标:

上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转。

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之。

间等价转化和理论联系实际的辩证唯物主义观点。

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)。

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为。

1q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)。

再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)。

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

等比数列的概念说课稿篇十七

依据如下:

(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。

(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。

(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。

突破难点方法:

(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。

(2)值得一提的是公式的证明还有两种方法:

方法二:由等比数列的定义得:运用连比定理,

后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。

等比数列前n项和公式及应用是本节课的重点内容。

依据如下:

(1)新大纲中有较高层次的要求。

(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。

(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。

突出重点方法:

(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。

(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。

(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。

四、习题训练。

本节课设置如下两种类型的习题:

1.中知三求二的解答题;。

2.实际应用题.

这样设置主要依据:

(1)练习题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。

(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的习题。

(3)应用题比较切合对智力技能进行检测,有利于数学能力的提高。同时,它可以使学生在后半程学习中保持兴趣的持续性和学习的主动性,。

五、策略、方法与手段。

根据高一学生心理特点、教材内容、遵循因材施教原则和启发性教学思想,本节课的教学策略与方法我采用规则学习和问题解决策略,即“案例—公式—应用”,简称“例—规”法。

案例为浅层次要求,使学生有概括印象。

公式为中层次要求,由浅入深,重难点集中推导讲解,便于突破。

应用为综合要求,多角度、多情境中消化巩固所学,反馈验证本节教学目标的落实。

其中,案例是基础,是学生感知教材;公式为关键,是学生理解教材;练习为应用,是学生巩固知识,举一反三。

在这三步教学中,以启发性强的小设问层层推导,辅之以学生的分组小讨论并充分运用直观完整的板书、棋盘教具和计算机课件等教辅用具、手段,改变教师讲、学生听的填鸭式教学模式,充分体现学生是主体,教师教学服务于学生的思路,而且学生通过“案例—公式—应用”,由浅入深,由感性到理性,由直观到抽象,加深了学生理解巩固与应用,有利于培养学生思维能力,落实好教学任务。

六、个人见解。

在提倡教育改革的今天,对学生进行思维技能培养已成了我们非常重要的一项教学任务。研究性学习已在全国范围内展开,等比数列就是一个进行研究性学习的好题材。在我们学校可以按照intel未来教育计划培训的模式,学完本节课后,教师可以给学生布置一个研究分期付款的课题,让学生利用网络资源,多方查找资料,并通过完成多媒体演示文稿和网页制作来共同解决这一问题。这样不仅培养了学生主动探究问题、解决问题的能力,而且还提高了他们的创新意识和团结协作的精神。

等比数列的概念说课稿篇十八

1、导言:

这样引入课题有以下三点好处:

(1)利用学生求知好奇心理,以一个小故事为切入点,便于调动学生学习本节课的趣味性和积极性。

(2)故事内容紧扣本节课教学内容的主题与重点。

(3)有利于知识的迁移,使学生明确知识的现实应用性。

2、讲授新课:

本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n项和公式及应用。

依据如下:

(1)从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。

(2)从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这一“瓶颈”则后面的问题迎刃而解。

(3)从心理学上讲,学生对这项学习内容的“熟悉度”不高,原有知识薄弱,不易理解。

突破难点方法:

(1)明确难点、分解难点,采用层层推导延伸法,利用学生已有的知识切入,浅化知识内容。比如可以先求麦粒的总数,通过设问使学生得到麦粒的总数为,然后引导学生观察上式的特点,发现上式中,每一项乘以2后都得它的后一项,即有,发现两式右边有62项相同,启发同学们找到解决问题的关键是等式左右同时乘以2,相减得和。从而得知求等比数列前n项和……+的关键也应是等式左右各项乘以公比q,两式相减去掉相同项,得求和公式,也掌握了这种常用的数列求和方法——错位相减法,说明这种方法的用途。

(2)值得一提的是公式的证明还有两种方法:

方法二:由等比数列的定义得:运用连比定理,

后两种方法可以启发引导学生自行完成。这样学生从各种途径,用多种方法推导公式,从而培养学生的创造性思维。

依据如下:

(1)新大纲中有较高层次的要求。

(2)教学地位重要,是教学中全部学习任务中必须优先完成的任务。

(3)这项知识内容有广泛的实际应用,很多问题都要转化为等比数列的求和上来。

突出重点方法:

(1)明确重点。利用高一学生求知积极性和初步具有的数学思维能力,运用比较法来突出公式的内容(彩色粉笔板书):,强调公式的应用范围:中可知三求二。

(2)运用纠错法对公式中学生容易出错的地方,即公式的条件,以精练的语言给予强调,并指出q=1时,。再有就是有些数列求和的项数易错,例如的项数是n+1而不是n。

(3)创设条件、充分保证。设置低、中、高三个层次的例题,即公式的直接应用、公式的变形应用和实际应用来突出这一重点。对应用题师生要共同分析讨论,从问题中抽象出等比数列,然后用公式求和。

【本文地址:http://www.daodoc.com/zuowen/17576820.html】

等比数列的概念说课稿

刀豆文库小编为你整合推荐7篇等比数列的概念说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

等比数列的概念说课稿(通用5篇)

等比数列的概念说课稿(通用5篇)在教学工作者开展教学活动前,总归要编写说课稿,说课稿有助于学生理解并掌握系统的知识。写说课稿需要注意哪些格式呢?下面是小编收集整理的等比数......

等比数列的概念说课稿(实用20篇)

文学作品是人类情感和思想的抒发。如何在困境中保持积极的心态,勇敢面对挑战?以下是一些优秀的案例,供大家学习和借鉴。等比数列的概念说课稿篇一(2)过程与方法:在定积分概念形成......

等比数列的概念说课稿范文(15篇)

平等和公正是构建和谐社会的基石。写总结要注意语言的准确性和表达的精炼性。下面是一份优秀总结范文,供大家参考和借鉴。等比数列的概念说课稿篇一等比数列前n项和一节是人......

等比数列的概念说课稿(汇总20篇)

经济全球化是当前世界经济发展的趋势,我们需要适应并抓住机遇。写一篇较为完美的总结,可以尝试运用一些技巧,如对比、归纳、分析等。以下是小编为大家收集的总结范文,仅供参考,大......

《等比数列的概念说课稿(优秀18篇).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
等比数列的概念说课稿(优秀18篇)
点击下载文档
相关专题
[教学课件]相关推荐
[教学课件]热门文章
下载全文