初中数学一次函数知识点总结_一次函数知识点总结
初中数学一次函数知识点总结由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“一次函数知识点总结”。
一次函数知识点总结: 一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一ic函数与二元一次方程组,一元一次不等式的关系。突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。
函数性质:
1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:
当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;
当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;
当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;
当两一次函数表达式中的k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。
若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数
图像性质
1.作法与图形:通过如下3个步骤:
(1)列表.(2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。
(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).2.性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比例):
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k
二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
当 k>0,b
一、三、四象限;
当 k0, 这时此函数的图象经过第一、二、四象限;
当 k
二、三、四象限;
当b>0时,直线必通过第一、二象限;
当b
三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k
二、四象限,不会通过第一、三象限。
4、特殊位置关系:
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1))
③点斜式 y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)
④两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y3)两点)
⑤截距式(a、b分别为直线在x、y轴上的截距)⑥实用型(由实际问题来做)
公式
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2)(其中分母为0,则分子为0)
x y
+,+(正,正)在第一象限,-(负,负)在第三象限
+,-(正,负)在第四象限
8.若两条直线y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.y=k(x-n)+b就是向右平移n个单位
中考要求
1.经历函数、一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;经历一次函
数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力.
2.经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;经历函数图象信息的识别与应用过程,发展形象思维能力.
3.初步理解一次函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系.
4.能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.中考热点
一次函数知识是每年中考的重点知识,是每卷必考的主要内容.本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.因此,一次函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题.中考命题趋势及复习对策
一次函数是数学中重要内容之一,题量约占全部试题的5%~10%,分值约占总分的5%~10%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查计算能力,逻辑思维能力、空间想象能力和创造能力.
针对中考命题趋势,在复习时应先理解一次函数概念.掌握其性质和图象,而且还要注重一次函数实际应用的练习.
复习要点
一次函数的图象和性质
正比例函数的图象和性质
考点讲析
1.一次函数的意义及其图象和性质
⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x的一
次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.
⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0)的一条直线,正比例函数y=kx的图
象是经过原点(0,0)的一条直线,如下表所示.
⑶.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.
⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.
①
②
③
④直线经过第一、二、三象限(直线不经过第四象限); 直线经过第一、三、四象限(直线不经过第二象限); 直线经过第一、二、四象限(直线不经过第三象限); 直线经过第二、三、四象限(直线不经过第一象限);
2.一次函数表达式的求法
⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x与y的值,确定一次函数表达式,需要两对x与y的值。
一次函数知识点总结:一次函数主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察......
初中数学一次函数知识点总结 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k≠0) 二、......
知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识......
八年级数学上册一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两......
刀豆文库小编为你整合推荐6篇一次函数知识点总结,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
