用比例解决应用题说课稿
第1篇:用比例解决应用题说课稿
用比例解决应用题说课稿
数学与社会密切相联,现实生活中蕴含着着大量的数学信息,数学在现实生活中有着广泛的应用。2011版《数学课程标准》在总目标中提到“要引导学生体会数学与生活之间的联系,运用数学的思维方式进行思考,增强提出问题、分析解决问题的能力。
《用比例解应用题》是人教版实验教材第十二册p59—60页的内容,属于“数与代数”领域中“数的概念”的综合应用。本课时内容既是“归一、归总”等乘除法应用题的延续和深化,又是学习7——9年级相关知识的重要基础。教材借助例5和例6分别呈现了运用正反比例的意义来解答应用题的过程;展示图中男、女同学的"思维交流”,点明了“一题可以多解”,勾起学生对已有知识经验的回忆,体现知识之间的联系。通过本节课的教学力求加深学生对正反比例意义的理解,通过正确判断相关联量的比例关系学会用比例解决简单的实际问题;在经历解决问题的过程中,诱发积极情感,训练有序思维,引导学生体验解决问题的策略,在发现、归纳中增强应用意识,提升分析能力、判断和推理能力;获取基本的思考方法和计算,形成方法模型。
学习该内容之前,学生已经理解了乘除法运算的意义和正反比例意义;会应用比例基本性质解比例,会判断正、反比例关系;会分析解答归一、归总应用题。在生活中,学生已有较多的经历和体验,如,学生从家到学校,如果速度快,则用时少;如果速度慢,则用时多。又如:买同样价钱的中性笔,买的支数少,用的钱少;买的支数多,则用的钱多。……正反比例的生活现象学生虽然有很多的经历体验,但是在解决具体问题的'过程中,学生可能对不常用相关联量的比例关系判断有一定困难;虽然能够在自主合作、思考交流中获取一些分析解答方法,但是“有序思维”的习惯比较欠缺,难以用简明的语言概括总结出分析解答方法,形成方法模型。
为有效达成教学目标,我设计了“竞比激趣,巩固旧知——自主合作,探究新知——练习深化,构建模型——拓展延伸,激活思维”的四环节教学流程引导学生经历比例在实际情境中的数学发展的过程,帮助其形成方法,构建模型。下面结合具体的流程设计谈一谈我对本节课有效教学策略的思考。
一、竞比激趣,巩固旧知
教育家孔子说:“知之者不如好之者,好之者不如乐之者”。《标准》也强调在教学中应关注学生情感态度的发展,找准学生探究新知的“最近发展区”,为学生营造轻松愉悦的学习氛围,以更好激发其参与学习的积极性、主动性,顺利实现新旧知识的衔接过渡,迁移类推。
1、创设趣味性挑战情境,诱发积极情感。
为了激发学生积极的学习情感,温故新知的必备基础,开课,我以“夺红旗”的形式[如下图] 呈现常用的关联量让学生在趣味性的挑战情境中,判断相关联的量在什么情况下成什么比例关系?引起学生对相关知识经验的回忆。
2、巩固强化判断方法,贮备探究基础。
学生判断后,提问:你是怎样分析判断的?能不能根据自己的理解用简明的话总结一下判断方法?
引导学生在思考、总结归纳中强化“找三定一写关系”的分析判断方法,为探究用比例解决问题的分析解答,做好相关准备。
[“找三定一写关系”,“找三”是指读题分析找出三个相关联的量;“定一”是指,分析三个量确定一个不变的量;“写关系”就是根据“找三定一”的分析,写出关系式。]
二、自主合作,探究新知
自主、合作、探究是新课程倡导的主要学习方式。《标准》强调,学生是数学学习的主人,教学中教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课,为了使学生更好地进行独立思考、合作交流等学习活动,我采用“目标导学”的方式让学生自主合作,探究新知。
1、目标导学,独立思考。
揭示课题后,出示自学目标:
1:用以前的方法列式计算,说说每步算式求的是什么?
2:学习例5、例6的解答过程,试着用1、2、3、4、5……的先后顺序说说是怎样解答这道题的?
3:对比观察例5、例6,说说它们有什么异同点?
4:用以前的方法解答和用比例解答,在方法上有什么联系吗?
目标的呈现为自学提供了明确的方向,围绕目标,他们会思考:用比例解决问题先干什么?后干什么?分几步分析解答?哪一步是最难的?以前的解法和现在的解法有联系吗?通过这些思考分析活动,他们会有一些收获。
2、小组合作,交流收获。
通过目标导学,学生在收获的同时,也可能遇到思维障碍,此时再给他们提供合作的机会,在小组内进行交流,相互学习,然后在全班交流展示用比例解决问题的分析解答方法,经历了独立思考,合作交流的探究过程,相信学生不难从例5中发现它的解答步骤。
3、概括总结,初得方法。
根据学生的交流,教师再适时引导明确方法:第一步:读题后,找三定一写关系;第二步:根据关系列比例;第三步:解比例;第四步:检验做答。至此,可以说学生已经基本获取了用比例分析解决问题的方法。然后放手让学生用此方法尝试解答例6。
三、练习深化,构建模型
《标准》强调,教学中千万不要把各种应用题的解法当作现成的结论来交,而是尽可能的给学生提供合适的问题,鼓励学生积极参与解决问题的活动,自己去探索、研究、寻求具体问题中的数量关系,进而列出方程,解决问题。在经历若干次这样的活动之后,使学生感受到方程与实际问题的关系,体会到方程是刻画现实世界的数学模型,领会数学建模的思想和基本过程,提高解决问题的能力和自信心。在探究新知后,我选取了学生比较熟悉的生活实例作为练习深化素材,引导学生经历对比、归纳等学习活动,构建模型。
1、针对练习,巩固方法
选取类似例题的针对练习,让学生巩固理解用比例解决问题的分析解答步骤,巩固分析解答方法。
①住宿生在校5天需要25元生活费,在校20天需要多少生活费?
②每4人一组,学校挑选了15组同学跳校园集体舞;如果改为6人一组,该分多少组?
2、对比归纳,构建模型
在进行一组基本的针对练习之后,让学生观察、比较,说说用比例解决问题题目在结构上有什么特点?分析解答方法有什么规律?引导学生在思考交流中明确比例问题的结构特点是“含有同种量的2个基本应用题,其中一个应用题条件完整,根据题中的2个直接条件可以求出新的问题、可以判断出比例关系,而另一个基本应用题则是类型相同,只告诉一个条件,把另一个条件变成问题”。根据其结构特点,再巩固分析解答方法,让学生充分的观察、对比、发现、归纳等学习活动中,构建模型,提升分析解决问题的能力。
四、拓展延伸,激活思维
培养思维灵活性是数学教学的重要任务之一。心理学家吉尔福特说,教学中教师必须注重对学生进行“发散思维”的训练,因为这是迎接信息时代、适应未来生活所应具备的能力。《课程标准》也强调指出,数学教育不仅要培养学生的应用意识,而且要使学生学会灵活的运用所学知识解决实际问题。为了有效激活学生思维,本节课,我注重了练习的坡度性,选取了有思维挑战性的实际问题以激活学生思维。
1、选择练习,让学生在对比辨析中灵活思维。
多媒体教室,如果用边长4分米的方砖铺地需要180块。如果用边长3分米的方砖铺地,需要多少块?
A、180:4=x:3 B、4×180=3x C、4×4180=3×3×x
此情境问题,需要学生切合实际思考“边长和块数”是不是相关联的量?它们成比例关系吗?有的学生可能会直接用“边长乘以块数”来列比例式,教师可抓住这一生成资源,引导学生在辨析中明白“在总面积一定的情况下,一块砖的面积与块数成反比例这一关系”。通过选择、辨析灵活学生思维。
2、坡度练习,让学生在多步思考中灵活思维
一条水渠,计划每天修300米,40天完成任务。实际上2天修了800米,照这样计算,可以提前几天完成任务?
条件和问题的变化,均增加了思维的难度。在这个问题情境中,让学生“跳一跳摘桃”能够有效激活学生思维。
总之,本节课我关注学生学习情感的发展,抓住学习学习的“最近发展区”,以自主合作探究的学习方式,引导促进学生在已有知识经验的基础上充分经历知识形成过程,在独立思考、合作交流的学习活动中构建模型,形成方法,提升能力。同时,也有以下思考:
用比例解答是解决问题的又一种方法,以前学习的归一、归总应用题,实际就是“先乘后除或先除后乘”的两步计算的乘除法应用题的分析解答方法,在教学这部分内容时,是否有必要引导学生理清这两种方法间的联系与异同?如果需要深入挖掘其联系,该选用什么样的有效策略来达成这个目标呢?这些问题的思考将促进我在以后的教学中不断的学习,不断的反思,不断的改进,力求提高自己的教学水平。
第2篇:比例应用题
WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
学生: 科目: 数学 年级 年级 教师: 刘兴宇 时间:2016 年
月
日
(一)求一个数是另一个数的几分之几(百分之几)的应用题
在分数、百分数三类基本应用题和较复杂的应用题中是以“求一个数是另一个数的几分之几(百分之几)”应用题为基础的。这是因为这类应用题,在实际工作和生活中应用广泛,另一方面通过这类应用题的学习,搞清百分数的基本数量关系,也就有利于其他两类百分数应用题的理解。
“求一个数是另一个数的几分之几(百分之几)”应用题的结构特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。这里,“一个数”是比较量,“另一个数”是标准量。因此,这一类问题的实质是已知比较量和标准量,求分率或百分率,也就是求它们的倍数关系。其解法是:分率(百分率)=比较量÷标准量
按其形式来分,可以有以下三种:
1.基本句式:
“甲是乙的几分之几(百分之几)”
甲是比较量,乙是标准量,几分之几(百分之几)”是分率(百分率)。即甲与乙比,甲是比较量,乙是标准量。句式为:“„„是„„的„„”。类似的提法有:“„„占„„的„„”、“„„相当于„„的„„”、“„„完成了„„的„„”等。其规律一般是:用“是”、“占”、“相当于”、“完成了”等词连接的两个量,前面那个量是比较量,后面那个量是标准量。
2.引伸句式:
“甲比乙多(或少)几分之几(百分之几)”。这种用“比„„多(或少)„„”的句式连接的两个量中的比较量发生了变化。必须弄清这种句式的实际意义,即:“甲-乙比乙多(或少几分之几)或(百分之几)”。与“„„比„„(标准量)多„„”类似,而涉及实际意义的有:“„„比„„增加、提高、超额、超过、上升„„”等。与“„„比„„少„„ ”相类似而涉及实际意义的有:“„„比„„减少、降低、下降、缩小、慢、节省、节约„„”等。其规律一般是:“„„比„„多(或少)„„”的句式中,比字后面那个量是标准量,而比较量则是两个相关联的量之差。
3.省略句式:
在分数、百分数应用题中,大部分叙述句中省略了某些成份,这一类应用题更多体现在问句中。在分析问题时,必须把省略简化了的成份补述出来,以便正确地确定比较量和标准量。一般来说,“„„占„„的„„”句中的“占”一类的关键词不写出来。如“完成了几分之几(百分之几)”“增产几分之几(百分之几)”“降低„„”等。以“价格降低了百分之几?”为例,原意是:“降低的部分占原价的百分之几”又如“实际超产百分之几”原意则是:“实际产量比原计划超过百分之几。”标准量分别是原价格和原计划,而比较量则是降低和超过的部分。除此之外在审题时还应注意类似“增加到”“增加了”“减少到”“减少了”等概念的区别。
在解法方面,与基本应用题相应的较复杂应用题大致有:
1.已知甲乙两数,求甲数比乙数多几分之几(百分之几)。这种类型题的解法是:
甲数÷乙数
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
2.已知甲乙两数,求乙数比甲数少几分之几(百分之几)。这种类型题的解法是:
(甲数-乙数)÷甲数×100%
如果按应用题涉及的实际意义来分类,常见的有:
A、求实际完成任务量的百分数。解法是:实际生产数÷计划数×100%
B、求超额完成量的百分数。解法是:(实际生产数-计划数)÷计划数×100%
C、求降低价格的百分数。解法是:(原价格-后来价格)÷原价格100%
D、求增长率。解法是:(后来生产量-原产量)÷原产量100% 根据这一类应用题涉及的实际意义、范围及其解法可概括为四个部分。1.基本型。已知两个具体数,求它们之间的或它们各自与总量之间倍数关系的应用题(包括求发芽率、浓度、误差、复种指数等),即:
(1)已知甲数与乙数,求甲数是乙数的几分之几(百分之几),乙数是甲数的几分之几(百分之几)。
(2)已知甲数和乙数,求甲数占甲乙总数的几分之几(百分之几),乙数占甲乙总数的几分之几(百分之几)。
例1.三年级一班有42名同学。参加游泳比赛的有18名。参加游泳比赛的占全班人数的几分之几?
分析:“求参加游泳比赛的人数占全班人数的几分之几”,是参加比赛的人数与全班人数比,应以全班人数做标准量。
解:18÷42=18/42=3/7 答:参加游泳比赛的占全班人数的3/7
例2.机修车间有男工25人,女工20人,女工占车间总人数的百分之几?
分析:“求女工占车间总人数的几分之几”应以车间总人数为标准量。
解:总人数:25+20=45(人)20÷45≈44.4% 答:女工占车间总人数的44.4%。
例3.玩具厂第一季度计划制造电动玩具600件,实际多做了48件。完成计划的百分之几?
分析:“求完成计划百分之几”,要以计划数做标准量,实际数做比较量。
解法1:(600+48)÷600=648÷600=108%
解法2:把计划数看做整体“1”,则实际比计划多做48÷600=8%,共完成计划数的8%+1=108%。即:48÷600+1=8%+1=108% 答:完成计划的108%。
例4.试验组用500粒小麦种子做发芽试验,有490粒种子发了芽。求发芽率。
分析,“率”就是比率,就是百分比。求发芽率就是求发芽数占种子总数的百分之几。以种子总数做标准量。
解:发芽数÷种子总数×100% 即:490÷500×100%=98% 答:发芽率是98%。
同理:求出粉率。就是求出粉数占粮食总数的百分之几,以粮食总数为标准量。
求出油率。就是求出油数占原料总数的百分之几,以原料总数为标准量。
求出勤率。就是求出勤人数占总人数的百分之几,以总人数为标准量。
求成活率。就是求活了的数占总数的百分之几,以总数为标准量。
求合格率。就是求合格的数占产品总数的百分之几,以产品总数为标准量。
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
例5.把12.5千克食盐放入1000千克水中,溶成盐水。求盐水的浓度。
分析:把食盐放入水中后形成的食盐水,叫做溶液,食盐叫溶质。溶质与溶液的百分比,叫做浓度。求浓度就是求溶质占溶液的百分之几,以溶液为标准量。根据题意溶液是食盐与水重量的和。
解:12.5÷(12.5+1000)×100%≈1.23% 答:盐水的浓度约是1.23%。
例6.从甲城到乙城实际距离是75.18千米,测得结果是75.04千米。求误差对于测量值的百分比。
解:(75.18-75.04)÷75.04≈0.19% 答:误差对于测量值的百分数约是0.19%。2.引伸型。求一个数比另一个数多(或少)几分之几(百分之几)的应用题。这部分应用题是基本类型的引伸。一般有:
(1)已知甲(大数)、乙(小数)两数,求甲数比乙数多几分之几(百分之几);
(2)已知甲(大数)、乙(小数)两数,求乙数比甲数少几分之几(百分之几);
这类题的解法规律是先求出两个数的差,以差作为比较量。但不能误认为甲数比乙数多几分之几(百分之几),乙数就比甲数少几分之几(百分之几)。比多时应以乙数(小数)作为标准量;比少时应以甲数(大数)作为标准量。
例1.山岭村早稻去年平均公亩产400千克,今年平均公亩产600千克,今年公亩产比去年公亩产多百分之几?去年公亩产比今年公亩产少百分之几?
第二问,“去年公亩产比今年少百分之几”,是指去年公亩产比今年公亩产少的数是今年公亩产的百分之几。所以,要以今年公亩产做标准量(整体“1”)。
解法1.第一问:(600-400)÷400=200÷400=50%
第二问:(600-400)÷600=200÷600=33.3%
解法2.第一问,也可以先求出今年公亩产是去年公亩产的百分之几,然后再求多百分之几。(600÷400)-1=150%-1=50%
第二问,也可以先求出去年公亩产是今年公亩产的百分之几,然后再求少百分之几。1-400÷600≈0.333=33.3%
答:今年公亩产量比去年多50%,去年公亩产量比今年约少33.3%。
例2.某机械厂制造一种轴承,每套轴承成本由2.3元降低到0.73元。降低了百分之几?
解:(2.3-0.73)÷2.3=68.3% 答:约降低了68.3%。
例3.某拖拉机厂,1985年原计划生产拖拉机1200台,上半年生产了675台,下半年比上半年增产2/5,超过计划百分之几?
解:先求出全年实际产量:675+675×(1+2/5)=1620(台)
再求比原计划多百分之几:(1620-1200)÷1200=420/1200=35% 答:超过原计划35%。
3.较复杂的求一个数是另一个数的几分之几或百分之几的应用题。
这类应用题是简单(基本)应用题的组合或引伸,关键在于找准标准量,并揭示它的变化和其它隐蔽的条件,化繁为简。
例1.某班有学生50人,会游泳的有36人,占全班人数的百分之几?如果这个班有女同学25人,其中3/5会游泳,那么,男同学有百分之几会游泳?
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
解:(1)36÷50=72%
(2)“男同学中有百分之几会游泳”就是求男同学中会游泳的占男同学的百分之几。应以男同学总数作为标准量。其中会游泳人数作为比较量。但这两个数都要通过已知条件算出来。即:男生人数:50-25=25(人),男同学中会游泳的人数:36-25×3/5=21(人),男生有百分之几会游泳:21÷25=84%
答:会游泳的占全班人数的72%,男同学中有84%会游泳。
例2.某校去年有女生200人,男生比女生多80人。今年女生人数比去年增加20%,因此比男生多30人,今年男生比去年减少百分之几?
解:去年女生200人,今年增加了20%,那么今年女生人数是去年的(1+20%)。要求今年男生人数比去年减少了百分之几,应以去年男生人数(200+80)为标准量;以今年(女生人数-30)比去年减少的男生数为比较量。即:200×(1+20%)=240(人)今年女生数。
[(200+80)-(240-30)] ÷(200+80)=(280-210)÷280=70÷280=25% 答:今年男生比去年减少了25%。
例3.某工厂两个生产小组按计划每月共生产零件680个。结果第一组超额本小组计划的20%,第二组比本组计划多生产零件54个。这样,两个小组比原计划共多生产零件118个。问第二组比本组计划超额百分之几?
解:“求第二组比本组计划超额百分之几”实质上也属于求“甲(大数)数比乙(小数)多百分之几”的类型,标准量应是第二组计划生产的零件数。
由题意知“两组共多生产零件118个”。而其中又知“第二组多生产54个”。所以,第一组多生产的零件数是118-54=64(个),是第一组超额部分,相当于第一组计划的20%。所以第一组计划生产零件数是64÷20%=320(个)。那么第二组计划生产零件数则是680-320=360(个)。求出了标准量。再求54(个)占360(个)的百分之几,就是求比计划超额的百分数。即:54÷360=15%。
综合式:54÷[680-(118-54)÷20%]=54÷[680-64÷20%]=54÷[680-320]=54÷360=15%
答:第二组比本组计划超额15%。
4.较特殊的求一个数是另一个数的几分之几(百分之几)的应用题。
这类应用题一般数量关系抽象复杂,解法一般不符合基本题的关系式,要具体问题具体分析。
例1。某校五年级学生人数的2/3等于四年级学生人数的4/5,问五年级人数是四年级学生人数的几分之几?四年级学生人数是五年级学生人数的几分之几?
说明:一般来说,若甲数的a/b等于乙数的c/d,则甲数就是乙数的c/d÷a/b。乙数就是甲数的a/b÷c/d(a、b、c、d≠0)。如果甲数是乙数的m/n,则乙数就是甲数的n/m。但如果求的是百分数,其形式看上去不同,实际是一样的。一般的说,甲数的a%等于乙数的b%,则甲数就是乙数的b/a×100%;乙数就是甲数的a/b×100%。所以在运算时,只用百分数的分子进行运算就可以了。
例2.甲数比乙数少37.5%,乙数比甲数多百分之几?
甲数比乙数多15%,乙数比甲数少百分之几?
“甲数比乙数少37.5%”这句话是以乙为标准量,为了简便设乙为100,则甲数应该是100-37.5=62.5。所以第一问可以用(乙-甲)÷甲=37.5÷(100-37.5)=60%来表示得数。“甲比乙多15%”这句话,如以乙为标准量时则
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
甲=乙+ 15(设乙为100),则乙比甲少15。所以第二问可以用(甲-乙)÷甲=15÷(100+15)=13.04%来表示得数。
这个求法,是省略了分母100的简略写法。当甲是小数时,所求的百分比是差量÷(1-差量)×100%;当甲是大数时,所求的百分比是差量÷(1+差量)×100%。
例3.有一瓶纯酒精,倒出1/4后用水加满,再倒出1/5后,用水加满,最后倒出1/6后用水加满,这时瓶中含有的纯酒精比原来少了几分之几?
解:以原来的纯酒精为整体“1”,则倒出1/4后瓶中剩下的纯酒精是原来的1-1/4=3/4;再倒出1/5后,瓶中剩下的纯酒精是原来的3/4×(1-1/5)=3/5;再倒出1/6后,瓶中剩下的纯酒精是原来的3/5×(1-1/6)=1/2;这时瓶中含有的纯酒精比原来少了1-1/2=1/2。
例4.某化肥厂生产一批化肥,计划用14天完成,由于改进了操作方法,提前4天完成了任务,求每天工作效率提高了百分之几。
例5.某标准件厂制造一种螺丝,生产每个所需的时间由原来的6分钟减少了3.5分钟。过去每天生产80个,现在每天能超产百分之几?
例6。水结成冰时,冰的体积比水增加1/11,当冰化成水时,水的体积比冰减少了几分之几? 解:以水的体积为标准。冰的体积是水的:1+1/11=12/11,反过来以冰的体积为标准,水的体积是冰的:1÷12/11=11/12,所以当冰化成水时,水的体积比冰少了:1-11/12=1/12
综合算式:1-1÷(1+1/11)=1/12
例7甲、乙、丙三人储蓄。甲储的钱数是乙的11/6倍,丙储的钱数是甲的2/5。那么乙和丙所储的钱数是甲的几分之几?
一 步 领 先
步 步 领 先 WOBANGNI EDUCATION 我帮你辅导中心
一对一个性化辅导教案
课后作业
习题4·1
1.四年级二班有学生50人。缺席5人,缺席的人数占全班总人数的几分之几?
2.某工厂有工人258人。星期五缺勤8人。求缺勤率。
3.群力玻璃厂计划本月制造热水瓶胆4000个,实际造了4500个,实际完成了原计划的百分之几?
4.某中学学生种柳树330棵,杨树110棵,求两种树各占百分之几?
5.体育学校要招收120名新生,有320人报考,将有几分之几不能录取?
6.育英小学种向日葵,活了250棵,死了10棵,求成活率。
7.把4克碘溶解在酒精中配成碘酒,如果配成的碘酒是2千克,求这种碘酒的浓度。
8.红光糖厂上月生产白糖365吨,超额了47吨,超额了百分之几?
9.某机械厂五月用钢材68吨,比原计划节约了14吨,节约了百分之几?
10.一种电视机的价格由550元降到440元,这种电视机降价百分之几?
11.某村前年小麦平均公亩产360千克,去年平均公亩产增加30千克,前年平均公亩产是去年平均公亩产的几分之几?
12.某修路队,两周内修一条80米长的公路,第二周修了48米,第一周修了全长的百分之几?
13.第三生产小组上月原计划生产零件400个,实际生产了640个,增产了百分之几?
14.某服装厂一月份生产出口服装700件,二月份生产同样的服装813件,二月份比一月份多生产百分之几?(天津和平区80年试题)
15.某牧民养羊450只,其中60%是山羊。现在又买回山羊10只,现在山羊占百分之几?
16.一堆煤960吨,运了两次后,还剩680吨。已知第一次运走总数的1/8,第二次运走总数的几分之几?
17.张师傅过去生产150个机器零件需用3小时,现在减少到2小时,每小时工作效率提高了百分之几?
18.大华机械厂食堂多次修改炉灶,用煤量由原来的平均每人每天1.5千克,减少到平均每人每天0.6千克,减少了百分之几?(天津市红桥区入学试题)
19.某造纸厂去年每月生产纸张3500令。今年的计划产量是50000令。去年的产量比今年的计划产量少百分之几?
20.红柳村前年收获棉花750千克,去年收获棉花900千克,去年比前年增产百分之几?
21.湘江玩具厂,原计划每月生产电动玩具378件,实际10个月的产量就超过全年计划的5%,实际每个月平均超额了百分之几?
22.某煤矿上半年完成全年任务的66%,下半年又比上半年增产5%,这样全年可以超产百分之几?
23.某市政工程队修一条8500米长的公路,已修了11天,平均每天修300米,其余的要在16天修完,每天工作效率必须提高百分之几?
24.地球表面积的71%是海洋,剩下的是陆地。海洋面积比陆地面积多百分之几?
25.一列客车每小时行40千米,一列货车每小时行50千米,货车速度比客车速度快百分之几?客车速度比货车速度慢百分之几?
26.振华工厂计划25天生产轴承1750套,实际4天就生产了360套,照这样计算。到期可超产百分之几
一 步 领 先
步 步 领 先
第3篇:《用比例解决问题》说课稿
《用比例解决问题》说课稿
一、教学目标:
知识与技能:
1.掌握用正、反比例知识解答含有正、反比例关系问题的步骤和方法。
2.使学生熟练地判断两种相关联的量是否成正反比例,从而加深对正反比例意义的理解。
3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。
过程与方法:
经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。
情感态度和价值观:
感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。
教学重点: 用比例知识解决实际问题
教学难点: 能够正确分析题中的比例关系,列出方程
二、说学情
用比例解决问题这部分内容是学生在对比例的基本性质有了一定的建构基础以及掌握了正、反比例的意义的背景下进行探索学习的。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。
三、说教法学法:
1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本
第4篇:《用比例解决问题》说课稿
《用比例解决问题》说课稿
郭永亮
一、说教材: 1、教学内容:
这部分内容是再教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5和例6的教学应用正、反比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是再原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。
成正、反比例的量,再生活实际中应用很广,学生再前两年的学习中,已接触过这种情况的问题,如归
一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,再原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而
第5篇:《用比例解决问题》说课稿
《用比例解决问题》说课稿
武昌区傅家坡小学 许刚
一、说教材:
《用比例解决问题》是义务教育课程标准实验教科书六年级下册第三单元比例的第三章节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归
一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
二、说学生:
学生在学习这部分知识之前,已经学习了有关比例的一些知识,也学习过列方程解应用题,也会解决生活中有关归
一、归总的
第6篇:《用比例解决问题》说课稿
《用比例解决问题》说课稿
作为一名默默奉献的教育工作者,通常需要准备好一份说课稿,借助说课稿我们可以快速提升自己的教学能力。怎样写说课稿才更能起到其作用呢?以下是小编收集整理的《用比例解决问题》说课稿,欢迎阅读,希望大家能够喜欢。
《用比例解决问题》说课稿1
说教学内容 :教科书第59页的例5和相关的“做一做”。
说教学目标:
1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点 :掌握用正比例的方法解答应用题。
说教学难点 :能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:
1.教法:创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备 :教学挂图、小黑板
说教学过程:
一、联系实际,复习迁移
1.判断下面每题中的两种量成什么比例?并说明理由。
(1
第7篇:用比例解决问题说课稿
用比例解决问题说课稿
说教学内容 :教科书第59页的例5和相关的“做一做”。
说教学目标:
1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点 :掌握用正比例的方法解答应用题。
说教学难点 :能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:
1.教法:创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备 :教学挂图、小黑板
说教学过程:
一、联系实际,复习迁移
1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的.用水问题里也藏有数学问题。
二、探索新知
