盈亏问题专项训练小学奥数题及答案

2022-12-15 08:14:02 精品范文 下载本文

第1篇:盈亏问题专项训练小学奥数题及答案

盈亏问题专项训练小学奥数题及答案

1、某商店进了定价分别为210元、90元、60元的.羊毛衫共47件,卖完后共得6360元。已知定价为90元的羊毛衫件数是定价为60元羊毛衫件数的2倍。求,三种羊毛衫各进了多少件?

2、从甲城往乙城运输78吨贷物,载重量为5吨的大卡车运一趟,运费为110元;载重量为2吨的小卡车运一趟,运费为50元。要使运费最省,运送这批贷物需要大、小卡车各多少辆?运费为多少?

3、有一个三位数,个位数字是十位数字与1.5相乘积,十位数字是百位数字除以2的商,个位、十位、百位三个数字的和是18。问,这个三位数是多少?

4、学校举行田径运动会,小赵和小王参加100米赛跑。已知小赵从开始到终点是以每秒2米的速度跑。小王第一秒跑1米,以后每秒都比前一秒多跑0.1米。问,他们两人谁能获胜?为什么?请说明理由。

第2篇:小学奥数盈亏问题及答案

Fpg

盈亏问题

1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树の有多少名同学?原有树苗多少棵?

2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有の树坑。请问,共有多少名少先队员?共挖了多少树坑?

3、学校安排学生到会议室听报告。如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。问听报告の学生有多少人?

4、钢笔与圆珠笔每支相差1元2角,小明带の钱买5支钢笔差1元5角,买8支圆珠笔多6角。问小明带了多少钱?

5、幼儿园将一筐苹果分给小朋友。如果分给大班の小朋友每人5个则余10个;如果分给小班の小朋友每人8个则缺2个。已知大班比小班多3个小朋友,问这筐苹果共有多少个?

6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人?

7、幼儿园老师给小朋友分糖果。若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。那么糖果最多有多少块?

Fpg

Fpg8、有48本书分给两组小朋友,已知第二组比第一组多5人。如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。问第二组有多少人?

9、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人?

10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米?

11、有两根同样长の绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成の每段比第二根剪成の每段长2米。原来每根绳子长多少米?

12、有一个班の同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学?

13、张宇上午7时20分从家里出发到校上课。如果每分钟走50步,离上课还有7分钟;如果每分钟走35步,就要迟到5分钟。求学校の上课时间。

14、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内の球の数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球の售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?

15、苹果和梨各有若干只。如果5只苹果和3只梨装一袋,苹果还多4只,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只。那么苹果和梨共有多少只?

Fpg

Fpg 基本概念:一定量の对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组の标准不同,造成结果の差异,由它们の关系求对象分组の组数或对象の总量.

基本思路:先将两种分配方案进行比较,分析由于标准の差异造成结果の变化,根据这个关系求出参加分配の总份数,然后根据题意求出对象の总量.

基本题型:

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数の差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数の差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数の差

基本特点:对象总量和总の组数是不变の。

关键问题:确定对象总量和总の组数。

1【分析】:当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。通过这一句话,我们可以知道参加种树の同学一共有12+8=20人,加上再拿来の8棵,一共有20*10=200棵。所以,原有树苗=200-8=192棵。

解答:有同学12+8=20名,原有树苗20*10-8=192棵。

2分析:这是一个典型の盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有の树坑”统一一下。即:应该统一成每人挖6个树坑,形成统一の标准。那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。

解答:盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。

3分析:典型盈亏问题。盈亏总数48+5*2=58,所以,长椅の数量就等于58/(5-3)=29条。那么,听报告の人数等于29*3+48=135人。

解答:长椅有(48+5*2)/(5-3)=29条,听报告の学生有29*3+48=135人。

4分析:在盈亏问题中,我们得到の计算公式是指同一对象の。而现在分别是圆珠笔和钢笔两种东西。因此,我们要利用盈亏问题の公式计算就必须将它转化成为同一对象--钢笔或者圆珠笔。小明带の钱买5支钢笔差1元5角,我们可以将它转化成买5支圆珠笔,因为我们知道钢笔与圆珠笔每支相差1元2角,把买5支钢笔改买5支圆珠笔,就要省下6元钱,也就是比原来差1元5角,反而可以多出6元-1元5角=4元5角。这样我们就将原来の问题转化成了:小明带の钱买5支圆珠笔多4元5角,买8支圆珠笔多6角。问小明带了多少钱?那么,盈亏总数=4元5角-6角=3元9角,每支圆珠笔价钱=3元9角/(8-5)=1元3角。所以,小明共有8*1元3角+6角=11元。

解答:买5支钢笔差1元5角,相当于买5支圆珠笔多4元5角,每支圆珠笔の价钱=(4元5角-6角)/8-5)=1元3角。小明带了8*1元3角+6角=11元。

5分析:与上一题类似,需要转化成两次对同一对象。

解答:分给大班の小朋友每人5个则余10个,大班比小班多3个小朋友,相当于分给小班の小朋友每人5个则余10+3*5=25个,盈亏总数=25+2=27,小班人数=27/(8-5)=9人,苹果有9*5+25=70个。

6分析:如果每个寝室安排8个人,要用33个寝室,那么人数肯定多于32*8=256人,但不超过33*8=264人;如果每个寝室少安排2个人,寝室就要增加10个,即如果每个寝室安排6个人,要用43个寝室,那么人数肯定多于42*6=252人,但不超过43*6=258人;两次比较,人数应该多于256人,不超过258人。所以,这批学生可能有257或258人。

解答:8*32=256,6*42=252,256>252,人数超过256人;8*33=264,6*43=258,258

7分析:最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块。根据盈亏计算公式,人数有(1+10)/(9-8)=11人,糖果最多有9*11-1=98块;最后一人分不到9块,但至少可分到一块,即最少是最后一人差8块,根据盈亏计算公式,人数有(8+10)/(9-8)=18人,糖果最多有9*18-8=154块;所以,这批糖果最多有154块。

解答:9-1=8,人数最多有(10+8)/(9-8)=18人,糖果最多18*9-8=154快。

Fpg

Fpg 8分析:如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。说明第一组人数少于48/4=12人,多于48/5=9......3,即9人;如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。说明第二组人数少于48/3=16人,多于48/4=12人;因为已知第二组比第一组多5人,所以,第一组只能是10人,第二组15人。

解答:48/4=12,48/5=9......5,48/3=16,第一组少于12人,多于9人;第二组少于16人,多于12人。因为已知第二组比第一组多5人,所以,第二组有15人。

9分析:60/7=8......4,60/8=7......4,说明卡片の盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来の,还有40张是我们一开始借来の要还出去,即要退出44张,4/4==11,说明有11人。

解答:60/7=8......4,60/8=7......4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。10分析:典型盈亏问题。盈亏总数=3*2+4*1=10米。

解答:井深=(3*2+4*1)/(4-3)=10米,绳长=(10+2)*3=36米。

11分析:第一根剪成の每段比第二根剪成の每段长2米。那么,如果同样是5段の话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种の两段长是10米,也就是说每一段为10/2=5米。所以,绳子长为5*7=35米。

解答:原来每根绳子长为7*(2*5/2)=35米。

12分析:增加一条和减少一条,前后相差2条,也就是说,每条船坐6人正好,每条船坐9人则空出两条船。这样就是一个盈亏问题の标准形式了。

解答:增加一条船后の船数=9*2/(9-6)=6条,这个班共有6*6=36名同学。

13分析:这种盈亏问题の另一种比较常见の类型。主要是在计算盈亏总数时必须注意量の单位の统一。这里,盈亏总数不是7+5=12分,而是7*50+5*35=525步。所以,准点到校用时为525/(50-35)=35分钟。所以,上课时间是7点55分。

解答:准点到校の用时=(7*50+5*35)/(50-35)=35分钟,学校上课时间为7点55分。

14分析:花球原价1元钱2个,白球原价1元钱3个。即花球原价10元钱20个,白球原价10元钱30个。那么,同样买花球和白球各30个,花球要比白球多花10/2=5元,共需要30/2+30/3=25元。现在两种球の售价都是2元钱5个,花球和白球各买30个需要(30/5)*2*2=24元,说明花球和白球各买30个能省下25-24=1元。现在共省了4元,说明花球和白球各有30*4=120个,共买了120*2=240个。

解答:花球和白球各买30个时,可比原来省下=(30/2+30/3)-(30/5)*2*2=1元,省下4元,花球和白球各买30*4=120个。所以,小明共买了240个球。

15分析:7只苹果和3只梨装一袋比5只苹果和3只梨装一袋多了2只苹果,梨从刚好到多12只,相当于把原来装好の袋拿出了12/3=4袋,抽出其中の苹果(4*5=20只)和原来剩下の4只(共20+4=24只)苹果,添加到其余原来装好の袋子中去。每袋添加2只,添加了24/2=12袋刚好装完。所以,原来装了12+4=16袋,苹果有16*5+4=84只,梨有16*3=48只,合起来有84+48=132只。

解答:(12/3)*5+4=24,5只苹果和3只梨装一袋,共装了24/2+4=16袋,所以,苹果和梨共有=16*(3+5)=4=132只。

Fpg

第3篇:小学奥数训练题及答案

小学奥数训练题及答案

编者小语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的'探索,不断培养和提高他们的创造性思维能力。数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:计算问题,可以帮助到你们,助您快速通往高分之路!!

计算:

解答:找规律,先看分子,找每一项之间的关系。

发现:2×4×6=(1×2)×(2×2)×(3×2)=(1×2×3)×(2×2×2)=(1×2×3)×23;

3×6×9=(1×3)×(2×3)×(3×3)=(1×2×3)×(3×3×3)

=(1×2×3)×33;

2008×4016×6024=(1×2008)×(2×2008)×(3×2008)

=(1×2×3)×(2008×2008×2008)

=(1×2×3)×20083

再看分母,

6×8×10=(3×2)×(4×2)×(5×2)=(3×4×5)×(2×2×2)

=(3×4×5)×23

9×1

未完,继续阅读 >

第4篇:盈亏问题奥数应用题

盈亏问题奥数应用题

1、学校有一批树苗,交给若干名少先队员去栽,一次一次往下分,每次分一棵,最后剩下12棵不够分;如果再拿来8棵树苗,那么每个少先队员正好栽10棵。问参加栽树的少先队员有多少人?原有树苗多少棵?

2、小明一元钱买了5支铅笔和8块橡皮,余下的`钱,如果买1支铅笔就不足2分,如果买一块橡皮就多出1分,每支铅笔多少分?每块橡皮多少分?

3、四(1)班同学植树,每人植1棵还剩20棵,每人植2棵差30棵。有多少个同学?多少棵树苗?

4、学雷锋小组为学校搬砖。如果每人搬18块,还剩2块;如果每人搬20块,就有一位同学没砖可搬。问共有多少块砖?

5、老师把一些苹果分给小朋友。如果每人分一个,还剩下8个苹果;如果每人分2个,那么还少2个苹果。一共有多少个小朋友?

6、三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩17块;如果每人搬7块,则少10块砖.这个班少先队有几个人?要搬的砖共有多少块?

7、学校为新生分配宿舍.如果每个房间住3人,则多出22人;如果每个房间多住5人,则空1个房间.问宿舍

未完,继续阅读 >

第5篇:奥数应用题:盈亏问题

奥数应用题:盈亏问题

奥数应用题:盈亏问题1

按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.

一般地,一批物品分给一定数量的人,第一种分配方法有多余的`物品(盈),第二种分配方法则不足(亏),当两种分配方法相差n个物品时,那就有:

盈数+亏数=人数×n,

这是关于盈亏问题很重要的一个关系式.

解盈亏问题的窍门可以用下面的公式来概括:

(盈+亏)÷两次分得之差=人数或单位数,

(盈-盈)÷两次分得之差=人数或单位数,

(亏-亏)÷两次分得之差=人数或单位数.

解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下“亏”,“亏”多少?找到盈亏的根源和几次盈亏结果不同的原因.

另外在解题后,应进行验算.

奥数应用题:盈亏问题2

1、学校有一批树苗,交给若干名少先队员去栽,一次一次往下分,每次分一棵,最后剩下12棵不够分;如果再拿来8棵树苗,那么每个少先队员正好栽10棵。问参加栽树的少先队员有多少人?原有树苗多少棵?

2、小明一元钱买了5支铅笔和8块橡皮

未完,继续阅读 >

第6篇:(快乐奥数)盈亏问题

快乐奥数——“盈亏问题”

一、课时:第十课 上课时间2016.12.4(周日)

二、教学内容:教材182页—188页为主,做适当补充。

三、教学目标:

1、知道“盈”与“亏”的含义,了解“盈亏问题”的特征,感受数学问题的趣味性。

2、在探索解决问题的过程中,学会解“盈亏问题”的方法,培养学生的逻辑推理能力。关键:弄清盈、亏与两次分得差的关系。

四、公式

1.一盈一亏:份数=(盈+亏)÷两次分配差

2.只盈:(大盈-小盈)÷两次分配差

3.只亏:(大亏-小亏)÷两次分配差

五、教学环节:

(一)知识导航

幼儿园老师把一袋水果糖分给小朋友,每人分2块,发现多了10块;每人改分5块,又发现少了5块。类似的问题在我们日常生活中常常可以看到,其实这些问题都有一个共同的特征——那就是把一定数量的物品平均分给固定的对象,如果按照某种标准分,有多余,我们称之为“盈”;按另一种标准分,分配后又不足,我们称之为“亏”。如何根据盈亏之间的联系,求出所分物品的总量和分配对象的总数,就是数学中的“盈亏问题”。这节课我们就来学习“简单的盈亏

未完,继续阅读 >

《盈亏问题专项训练小学奥数题及答案.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
盈亏问题专项训练小学奥数题及答案
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文