分式的基本性质说课稿
第1篇:分式的基本性质说课稿
分式的基本性质说课稿((通用10篇))由网友“梁封”投稿提供,这次小编给大家整理过的分式的基本性质说课稿,供大家阅读参考。
篇1:分式的基本性质说课稿
老师们:
大家好!今天我说课的内容是北师大版八年级下册数学第三章《分式》第一节第二课时《分式的基本性质》。下面,我将从九个方面对本课加以说明。
一、说教学理念
我的教学理念是:根据建构主义理论,以新课改理念为指导,以人为本,面向全体学生,从最后一名抓起,努力使我的课堂真正成为:民主的、平等的、开放的、和谐的、充满了激趣的、师生互动、交流的课堂。培养学生学习对生活有用的数学;学习对终生发展有用的数学!
二、说学情调查
八年级学生具备了一定的数学知识和技能,具有较强的争胜心和表现欲,迫切希望得到老师的表扬和鼓励;但思维的深度和广度还不够;需要老师巧妙设疑、灵活引导、及时激励。
三、说教材分析
【1】、教材所处的地位、作用及与前后的联系
本节教材是本单元的第一节,从知识结构来看,本节是学生在已经掌握分数的基本性质和分式的定义的基础上,进一步学习分式的基本性质。也为后面学习分式的有关运算打下基础;从研究方式上来看,它是自主探究——合作交流相结合的学习方法的又一次应用;从解决问题的思想方法来看,它强化了学生的类比转化数学思维能力,促进了数学修养的提高。所以这一节无论从知识性还是思想性来讲,在初中数学教学中都占有重要的地位。
【2】、三维教学目标
根据教学大纲和学生的认知水平,我确定本节课教学目标是:
(一)知识与技能:
1、推导并掌握分式的基本性质,灵活运用分式的基本性质进行分式的变形。
2、了解分式约分的步骤和依据;掌握分式约分的方法。
3、了解最简分式的定义,能将分式化为最简分式。
(二)过程与方法:
使学生通过观察、讨论、类比等活动,获得一些探索性质的初步经验。
(三)情感与价值观:
1、通过与分数的类比,使学生初步掌握类比的思想方法:即类比— —联系— —归纳— —拓展。
2、培养学生与同伴的合作交流能力。
【3】、教学重点
篇2:分式的基本性质说课稿
【4】、教学难点
分子、分母是多项式的分式约分。
四、说教法设计
根据本节课的内容特点及学生的实际水平,我采用启发式教学,采取类比、观察、讨论、归纳等方法,注重创设问题情景,巧妙设置问题链,充分暴露思维过程,发展学生的思维能力。
五、说学法指导
“授人以鱼,不如授人以渔”。 我设计的学法:自主探究——合作交流相结合;形式上有:自学、对学、群学、展示、点评等。
六、说教学用具
多媒体课件,充分利用电脑多媒体优化数学课堂教学,从生活实际出发,激发学生学习的兴趣,提高课堂效率。
七、说教学过程
1、下列各式中,属于分式的是( )
A、 B、 C、 D、
(一)、复习提问 温故知新
2、当x=____时,分式 没有意义。
3、分式的值为零的条件是 。
设计意图:本环节复习前面学习的知识方法,使学生养成及时复习巩固的好习惯。
(二)、创设情景 导入新课
1、幼儿园阿姨要把3个苹果平均分给6个小朋友,每个小朋友得到多少苹果?
2、
3、分数的基本性质是什么?
设计意图:通过三个问题引导学生独立思考、回忆分数的基本性质,要抓住“分子与分母同时”“乘以(或除以)同一个”“不等于零”这几个关键字。为推导分式的基本性质打下基础。
(三)、自学释疑 合作交流
2、 类比分数的基本性质,你能得到分式的基本性质吗?说说看!
3、运用分式的基本性质时需要注意什么?
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式
的值不变。这个性质叫做分式的基本性质。
学生归纳以下要点:①分子、分母应同时作乘、除法中的同一种变换;②所乘(或除以)的必须是同一个整式;③所乘(或除以)的整式应该不等于零。
在活动中教师要关注:
(1) 能否用数学语言表述新知识;
( 2 )学生对“性质”的运用注意事项是否理解。
设计意图:本环节设计采用循序渐进的原则,以问题为出发点,依照学生的认识规律设置一系列问题,通过学生的自学、讨论、归纳、发现,培养学生的类比、归纳能力。
(四)、训练操作 巩固新知
例2、下列分式的右边是怎样从左边得到的?
(1) (2)
学生讨论、交流、口答,老师指导、矫正。注意要暴露学生的思维过程,及时强调分式基本性质的运用。
反思:为什么(1)中有附加条件y≠0, 而(2)中没有附加条件x≠0?
练习:1、填空:(1)
反思:你是怎么想的?
2、下列各组中的分式,能否由左边变形为右边?
(1) 与 (2) 与
(3) 与 (4) 与
反思:运用分式的基本性质应注意什么?
(1) 都;(2)同一个;(3)不为零。
例3、化简下列分式:
学生先独立思考、作答 ,并安排两名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。
对问题(2),学生思考、归纳后,在小组进行交流,并综合各小组中同学的不同见解得出结论。
在活动中教师要关注:
(1) 大部分学生能否准确、熟练地完成任务;
(2) 学生能否用数学语言表述发现的规律;学生在运算中表现出来的情感与态度是否积极。
(3) 注意解题格式的强调。
强调:1、把一个分式的分子和分母的公因式约去,这种变形叫分式的约分.
2、分式约分的依据是什么?分式的基本性质
做一做:化简下列分式:(1)(2)
议一议:你对书上小颖和小明的解法有何看法?与同伴交流!
教师组织学生活动,并强调:分子和分母已没有公因式的分式叫
分式约分的注意事项:
1、当分子或分母是多项式时,应先 。
2、找公因式(数字取各数字的` ;字母取 的字母,并且要取相同字母的 次幂。)
3、约分要 ,结果要化成最简 或整式。
设计意图:通过设置以上几个问题让学生从不同角度去认识问题和解决问题,培养学生运用分式的基本性质进行分式的等值变形的技巧;掌握分式的约分的方法;会把分式化成最简分式。
(五)、课堂小结 回味反思
说说我们本节的收获吧!
1.本节课主要学习了那些知识?
2.应用分式的基本性质应注意什么?
3.化简分式我们应注意什么?
设计意图:通过这一环节,学生对学习情况进行反思,主要包括:对自己的思考过程进行反思;对学习活动涉及的思想方法进行反思;对解题思路、过程和语言表述进行反思;等等。帮助学生获得成功的体验和失败的感受,积累学习经验。
(六)、课堂小测 共同成长
化简下列分式:
设计意图:本环节考查了学生进行分式约分的能力;以便于教师及时指导学生。
(七)、布置作业 查缺补漏
必做题:课本第72页习题3.2【知识技能】
选做题:课本第73页习题3.2【数学理解】(3,4)
设计意图:作业布置注重了分层,让探究延伸到课外。
八、说板书设计:
篇3:分式的基本性质说课稿
一、 分式的基本性质
注意:1、都;2、同一个;3、不为零
二、 分式的约分
三、 最简分式
设计意图:条理清晰,重点突出,便于学生对知识的理解与巩固。
九、说教学反思:
教完本节课,我感触最深的有以下几点:
1.教学过程中我强调要学生形成积极主动的学习态度,注重学生的知识建构过程,关注学生的学习兴趣和体验。
2.注重分类、归纳、类比、转化等数学思想的渗透。
3.注重面向全体学生,从最后一名抓起。
4. 注重对学生进行过程性评价,注重评价方式的多元化。
篇4:初二数学分式基本性质说课稿
初二数学分式基本性质说课稿
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:
(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的.分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。
一、教法学法分析
1、学情分析
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理。
2、教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导――发现式教学法”,引导学生运用类比的思维方法进行自主探究。在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术,激发学生的学习兴趣,同时也增大教学容量,提高教学效率。
3、学法指导
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到“学会”和“会学”的目的。
二、教学过程(多媒体教学)
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则,所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。
针对学生的发现,在第二个环节“类比联想形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。
第三环节“指导运用巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析与的本质区别和不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有(1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我在第四环节“循序渐进再探新知”创设了以下活动供学生自主探究分式有意义的条件:
首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。
我抓住这一契机,给出:
(2)、概括分式在什么条件下有意义(对一般表达式里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、(2)、(3)、接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当取什么值时,分式无意义?
几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。
篇5:八年级数学分式基本性质说课稿
八年级数学分式基本性质说课稿
一、教材分析
1、教材的地位及作用
“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。
2、教学重点、难点分析:
教学重点:理解并掌握分式的基本性质
教学难点:灵活运用分式的基本性质进行分式化简、变形
3、教材的处理
学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用. 最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
二、目标分析:
数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:
1、知识技能:1)了解分式的基本性质
2)能灵活运用分式的基本性质进行分式变形
2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
3、解决问题:通过探索分数的基本性质,积累数学活动的'经验。
4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。
三、教法分析
1、教学方法
数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
2、学法指导
现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。
3、教学手段
我所采用的教学手段是多媒体辅助教学法。
四、程序分析
活动1 创设情境,引入课题
教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。
设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。
活动2 类比联想,探究交流
教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。
设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。
活动3 例题分析 运用新知
教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。
活动4 练习巩固 拓展训练
教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。
设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。
篇6:分式的基本性质
例1 下列等式的右边是怎样从左边得到的?
(1);
由学生口述分析,并反问:为什么?
解:∵
∴.
(2);
学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)
解:∵
∴.
(3)
学生口答.
解:∵,
∴.
例2 填空:
(1);
(2);
(3);
(4).
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.
(1);
分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?
解:.
(2).
解:.
例4 判断取何值时,等式成立?
学生分组讨论后得出结果:
∴.
(二)随堂练习
1.当为何值时,与的值相等
A.B.C.D.
2.若分式有意义,则,满足条件为( )
A.B.C.D.以上答案都不对
3.下列各式不正确的是( )
A.B.
C.D.
4.若把分式的和都扩大两倍,则分式的值
A.扩大两倍 B.不变
C.缩小两倍 D.缩小四倍
(三)总结、扩展
篇7:分式的基本性质
第一课时
(一)教学过程
【复习提问】
1.分式的定义?
2.分数的基本性质?有什么用途?
【新课】
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:
,
(其中是不等于零的整式.)
篇8:分式及其基本性质课件
分式及其基本性质课件
分式及其基本性质课件
学习目标:
1、了解分式和有理式的概念,明确分式与整式的区别;
2、能用分式表示现实情景中的数量关系,体会分式的模型思想,进一步发展符号感。
学习重点:
分式的概念
学习难点:
分式概念的理解
学习过程
1、学习准备
1、举例谈谈分数的意义。
2、举例说明分数线的作用。
2、合作探究
1、问题1 有块稻田,第一块是4hm2,每公顷收水稻10500kg;第二块是3hm2,每公顷收水稻9000kg,这两块稻田平均每公顷收水稻 kg。
如果第一块是mhm2,每公顷收水稻akg;第二块是nhm2,每公顷收水稻bkg,则这两块稻田平均每公顷收水稻 kg。
问题2 一件商品售价x元,利润率为a%(a>0),则这种商品的`成本是元。
观察上面代数式: , , ,它们有什么特征?和整式比较有什么不同?
2、你能写出几个和上面代数式类似的例子吗?
结合分数定义和p87分式定义,了解分式的概念。
整式和分式统称为有理式。
3、练习:下列代数式中,哪些是分式?哪些是整式?
4、思考:
(1)我们知道分数中分母不能为零。同样,分式中的分母的值也不能为零,否则分式就没有意义。要保证分式有意义,则必须分母不能为零。
(2)分式的值在什么情况下为0?
5、例题
例1(1)当x取何值时,分式 有意义?
(2)当x取什么值时,分式 的值有意义?
(3)讨论:当x取什么值时,分式 的值O?
6、练习:
(1)一箱苹果售价a元,箱子与苹果总质量为mkg,箱子质量为nkg。每千克苹果的售价为多少元?
(2)当x取什么值时,分式 有意义?
3、学习体会对照学习目标,通过预习,你觉得自己有哪些方面的收获?
有什么疑惑?
4、自我测试
1、判断题,若是错的该怎样改正。
(1) 是分式。 ( )
(2) 不是分式。( )
(3)当分式的分子值为0时,分式的值为0。( )
(4)当x≠2时,分式 有意义。( )
2、如果分式 的值为0,则x= 。
3、当x= 时,分式 的值为负数。
4、x等于什么数时,下列分式没有意义?
(1) (2)
5、甲乙两人同时同地同向而行,甲每小时走akm,乙每小时走bkm。如果从出发到终点的距离为mkm,甲的速度比乙快,则甲比乙提前几小时到达终点?
五、思维拓展
1、如果分式 有意义,那么x的取值范围是 。
2、已知分式 ,问a取何值时:
(1)分式的值为正?
(2)分式的值为负?
(1)分式的值为0?
(1)分式没有意义
篇9:分式的基本性质
第一课时
(一)教学过程
【复习提问】
1.分式的定义?
2.分数的基本性质?有什么用途?
【新课】
1.类比分数的基本性质,由学生小结出分式的基本性质:
分式的分子与分母乘以(或除以)同一个不等于零的整式,分式的值不变,即:
,
(其中是不等于零的整式.)
2.加深对分式基本性质的理解:
例1 下列等式的右边是怎样从左边得到的?
(1);
由学生口述分析,并反问:为什么?
解:∵
∴.
(2);
学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)
解:∵
∴.
(3)
学生口答.
解:∵,
∴.
例2 填空:
(1);
(2);
(3);
(4).
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.
(1);
分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?
解:.
(2).
解:.
例4 判断取何值时,等式成立?
学生分组讨论后得出结果:
∴.
(二)随堂练习
1.当为何值时,与的值相等
A.B.C.D.
2.若分式有意义,则,满足条件为( )
A.B.C.D.以上答案都不对
3.下列各式不正确的`是( )
A.B.
C.D.
4.若把分式的和都扩大两倍,则分式的值
A.扩大两倍 B.不变
C.缩小两倍 D.缩小四倍
(三)总结、扩展
篇10:分式的基本性质
2.性质中的可代表任何非零整式.
3.注意挖掘题目中的隐含条件.
4.利用分式的基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理提供了便利条件.
(四)布置作业
教材P61中2、3;P62中B组的1
(五)板书设计
第2篇:分式及其基本性质说课稿
分式及其基本性质说课稿
一、课题介绍
选自北京版八年级上册第十章第一节“分式及其基本性质”,根据课标的理念,对于本节课,我将从教材分析、教学重难点、教法学法分析、教学过程、教学评价五个方面具体阐述我对这节课的理解和设计.二、教材分析
1、地位和作用
本节内容分两课时完成,我设计的是第二课时的教学,主要内容是分式的基本性质及其运用.分式是继整式之后对代数式的学习,是整式的一种补充,与整式一样分式也是解决问题的常用工具.本节课的内容是分式中较为重要的一课,是今后学习分式约分与通分,分式运算和解分式方程的前提,因此它起着承上启下的作用.2、教学目标
(1)知识目标:使学生理解分式的意义,掌握分式的性质及基本运用.进一步培养学生代数表达能力和分析、解决问题的能力、以及创新能力.(2)能力目标:通过类比分数的基本性质,探索分式的基本性质,使学生初步掌握类比的思想方法.(3)情感目标:感受类比的理性美.培养学生的观察能力,使学生形成自主学习、合作学习的良好习惯.三、教学重难点 重点:理解并掌握分式的基本性质.难点:灵活运用分式的基本性质进行分式变形.四、教法学法分析
1、教法分析
基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程.根据教材分析和重难点分析,确定本节课主要采用启发引导的教学方法.学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标,突破重难点.2、学法分析
在学法指导上,根据课程标准理念,学生是学习的主体,教师只是学习的帮助者、引导者.因此,在本节课的教学中我主要是引导学生通过观察、猜想、归纳进而对分式的基本性质做出探究.例如学生在之前已经学过分数的基本性质,那么学生就应该通过对比自己发现归纳性质,教师只是提问引导.五、教学过程
(一)复习引入
形如A/B,(A、B是整式,B中含有字母,B不等于0)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。设计意图:熟悉上节课所学的内容,为这节课学习新知识做好铺垫.(二)合作探究,讲授新知 活动一:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数哪些相等?相等的依据是什么? 2/3 4/6 3/9 6/9 10/18 8/122、分数的基本性质是什么?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质.(分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质)
设计意图:通过复习分数的的基本性质,激活学生原有的知识,创设问题情境,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础.活动二:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质.设计意图:问题1让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的.问题2是为了提醒学生注意事项,即式子中的M不为0,让学生自己总结出来记忆更深刻,由此也可以更好的的完成例题与练习.同时,组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,总结出:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变.2、分式的基本性质中应该注意:
(1)注意括号内的限制条件:M不为零的整式,若M=0,则分式就没有意义;
(2)此性质的隐含条件是:分式中,B≠0.设计意图:一方面检查学生对“性质”的认识程度,另一方面学生自己总结出的记忆更加深刻,提醒学生注意事项,由此可以更好的完成例题与练习.(三)例题讲解 例1 填空 书上例题
设计意图:本题是分式基本性质的进一步运用,让学生研究每一题的特点,紧扣“性质”进行分析,以期达到理解并掌握性质的教学目的.同时,运用分数的基本性质,让学生们进行约分。例2 将下列分式约分 书上例题
设计意图:运用分数的基本性质,学习约分的步骤。更好地体会分式性质的应用。
(四)课堂练习书上练习
设计意图:练习第1题承接着例题而来,让学生更好地体会“性质”的应用;第2题,强化约分练习,为了培养学生用“性质”解决问题的能力.(五)回顾总结
至此,一节课接近尾声,那么我将引导学生进行小结:分式的基本性质,基本性质的运用.设计意图:通过小结,使学生对本节所学内容进一步系统化,使学生的知识结构更合理、更完善.(六)作业布置 必做题:(1)复习本节课的知识,达到能基本掌握并能灵活应用,并预习下一节课的内容.(2)习题10.2的1、2题.选做题:习题10.2提升部分
设计意图:熟悉本节课的知识,通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做一些练习.七、教学评价
这节课,我通过五个过程的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识.在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获.
第3篇:分式的基本性质说课稿
《分式的基本性质》说课稿
今天我说课的内容是《分式的基本性质》。下面我将从:教材分析、学生与学法分析、教法分析、教学过程分析、教学课后反思几个方面进行说明。
一、教材分析:(一)教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学上册第十五章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的约分、通分及混合运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
(二)教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、知识与技能
A、理解分式的基本性质。灵活运用“性质”进行分式的变形。B、能运用分式的基本性质对分式进行约分。
2、过程与方法
通过类比、探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、情感态度与价值观 通过探究分式基本性质及解决问题的过程,体验合
第4篇:分式的基本性质说课稿
分式的基本性质说课稿
呼图壁县第五中学
教材分析:
一、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十五章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键。
二、教学重点、难点的分析
重点:理解并掌握分式的基本性质。
难点:灵活运用分式的基本性质,进行分式恒等变形、变号。
三、教材的处理
1)通过小组合作探究分式的基本性质,利用问题引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。
2)引导学生用语言和式子表示分式的基本性质并通过针对练习使学生对其有更深的理解。
3)通过例题的讲解,让学生初步理解“性质”,再通过不同类型的练习,使其掌握“性质”的运用。
4)引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
学情分析:
众所周知,关注学情是教学内在的需要。我们的学校刚刚建校2周年,学生的基础相对比较薄弱,在数学知识点运
第5篇:分式的基本性质说课稿
分式的基本性质说课稿
老师们:
大家好!今天我说课的内容是北师大版八年级下册数学第三章《分式》第一节第二课时《分式的基本性质》。下面,我将从九个方面对本课加以说明。
一、说教学理念
我的教学理念是:根据建构主义理论,以新课改理念为指导,以人为本,面向全体学生,从最后一名抓起,努力使我的课堂真正成为:民主的、平等的、开放的、和谐的、充满了激趣的、师生互动、交流的课堂。培养学生学习对生活有用的数学;学习对终生发展有用的数学!
二、说学情调查
八年级学生具备了一定的数学知识和技能,具有较强的争胜心和表现欲,迫切希望得到老师的表扬和鼓励;但思维的深度和广度还不够;需要老师巧妙设疑、灵活引导、及时激励。
三、说教材分析
【1】、教材所处的地位、作用及与前后的联系
本节教材是本单元的第一节,从知识结构来看,本节是学生在已经掌握分数的基本性质和分式的定义的基础上,进一步学习分式的基本性质。也为后面学习分式的有关运算打下基础;从研究方式上来看,它是自主探究——合作交流相结合的学习方法的又一次应用;从解决问题的思想方法来看,
第6篇:数学《分式的基本性质》说课稿
数学《分式的基本性质》说课稿
作为一名默默奉献的教育工作者,通常会被要求编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。怎样写说课稿才更能起到其作用呢?下面是小编为大家收集的数学《分式的基本性质》说课稿,仅供参考,欢迎大家阅读。
数学《分式的基本性质》说课稿1
对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求
