一元一次方程应用题及答案

2023-02-20 08:07:17 精品范文 下载本文

第1篇:一元一次方程应用题及答案

1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?

设慢车开出a小时后与快车相遇 50a+75(a-1)=275 50a+75a-75=275 125a=350 a=2.8小时

2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离。

设原定时间为a小时 45分钟=3/4小时 根据题意

40a=40×3+(40-10)×(a-3+3/4)40a=120+30a-67.5 10a=52.5 a=5.25=5又1/4小时=21/4小时 所以甲乙距离40×21/4=210千米

3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?

解:设乙队原来有a人,甲队有2a人 那么根据题意

2a-16=1/2×(a+16)-3 4a-32=a+16-6 3a=42 a=14 那么乙队原来有14人,甲队原来有14×2=28人 现在乙队有14+16=30人,甲队有28-16=12人

4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率。解:设四月份的利润为x 则x*(1+10%)=13.2 所以x=12

设3月份的增长率为y 则10*(1+y)=x y=0.2=20%

所以3月份的增长率为20%

5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人? 解:设有a间,总人数7a+6人 7a+6=8(a-5-1)+4 7a+6=8a-44 a=50 有人=7×50+6=356人

6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油? 按比例解决

设可以炸a千克花生油 1:0.56=280:a a=280×0.56=156.8千克

完整算式:280÷1×0.56=156.8千克

7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?

解:设总的书有a本 一班人数=a/10 二班人数=a/15 那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本

8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗?

解:设有a人 5a+14=7a-6 2a=20 a=10 一共有10人

有树苗5×10+14=64棵

9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?

解:设油重a千克 那么桶重50-a千克

第一次倒出1/2a-4千克,还剩下1/2a+4千克

第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油 根据题意

1/8a-5/3+50-a=1/3 48=7/8a a=384/7千克 原来有油384/7千克

10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)

设96米为a个人做 根据题意 96:a=33:15 33a=96×15 a≈43.6 所以为2班做合适,有富余,但是富余不多,为3班做就不够了

11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。解:设原分数分子加上123,分母减去163后为3a/4a 根据题意

(3a-123+73)/(4a+163+37)=1/2 6a-100=4a+200 2a=300 a=150 那么原分数=(3×150-123)/(4×150+163)=327/76312、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)

设水果原来有a千克 60+60/(2/3)=1/4a 60+90=1/4a 1/4a=150 a=600千克

水果原来有600千克

13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)设原来有a吨

a×(1-3/5)+20=1/2a 0.4a+20=0.5a 0.1a=20 a=200 原来有200吨

14、王大叔用48米长的篱笆靠墙围一块长方形菜地。这个长方形的长和宽的比是5:2。这块菜地的面积是多少? 解:设长可宽分别为5a米,2a米 根据题意

5a+2a×2=48(此时用墙作为宽)9a=48 a=16/3 长=80/3米 宽=32/3米

面积=80/3×16/3=1280/9平方米 或

5a×2+2a=48 12a=48 a=4 长=20米 宽=8米

面积=20×8=160平方米

15、某市移动电话有以下两种计费方法:

第一种:每月付22元月租费,然后美分钟收取通话费0.2元。第二种:不收月租费 每分钟收取通话费0.4元。

如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢?? 设每月通话a分钟 当两种收费相同时 22+0.2a=0.4a 0.2a=22 a=110 所以就是说当通话110分钟时二者收费一样

通话80分钟时,用第二种22+0.2×80=38>0.4×80=32 通过300分钟时,用第一种22+0.2×300=82

16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿。怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?

设a个工人加工桌面,则加工桌腿的工人有你60-a人 3a=(60-a)×6/4 12a=360-6a 18a=360 a=20 20人加工桌面,60-20=40人加工桌腿

17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离

设距离为a千米 a/(17/6)-24=a/3+24 6a/17-a/3=48 a=2448千米

18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地。乙从B地到A地,在A地停留40分钟后,又从A地返回B地。已知两人同时分别从A B两地出发,经过4小时。在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?

设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时 30分钟=1/2小时,40分钟=2/3小时(4-2/3)a+(a+1.5)×(4-1/2)=12×3 10/3a+7/2a+21/4=36 41/6a=123/4 a=4.5千米/小时

甲的速度为4.5+1.5=6千米/小时

19、甲乙两人分别从相距7千米的AB两地出发同向前往C地,凌晨6点乙徒步从B地出发,甲骑自行车在早晨6点15分从A地出发追赶乙,速度是乙的1.5倍,在上午8时45分追上乙,求甲骑自行车的速度是多少。解:设乙的速度为a千米/小时,甲的速度为1.5a千米/小时 15分=1/4小时,6点15分到8点45分是5/2小时 距离差=7+1/4a 追及时间= 5/2小时(1.5a-a)×5/2=7+1/4a 5/4a=7+1/4a a=7千米/小时

甲的速度为7×1.5=10.5千米/小时

20、在一块长为40米,宽为30米的长方形空地上,修建两个底部是长方形且底部面积为198平方米的小楼房,其余部分成硬化路面,若要求这些硬化路面的宽相等,求硬化路面的宽? 设硬化路面为a米

40a×2+(30-2a)×a×3=40×30-198×2 80a+90a-6a²=804 3a²-85a+402=0(3a-67)(a-6)=0 a=67/3(舍去),a=6 所以路宽为6米 因为3a

一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。

(1)试确定A种类型店面的数量?

(2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间? 解:设A种类型店面为a间,B种为80-a间 根据题意

28a+20(80-a)≥2400×85% 28a+1600-20a≥2040 8a≥440 a≥55

A型店面至少55间 设月租费为y元

y=75%a×400+90%(80-a)×360 =300a+25920-324a =25920-24a 很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元

二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:

1、每亩地水面组建为500元。

2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;

3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;

4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;

问题:

1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);

2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元? 解:

1、水面年租金=500元

苗种费用=75x4+15x20=300+300=600元 饲养费=525x4+85x20=2100+1700=3800元 成本=500+600+3800=4900元

收益1400x4+160x20=5600+3200=8800元 利润(每亩的年利润)=8800-4900=3900元

2、设租a亩水面,贷款为4900a-25000元 那么收益为8800a 成本=4900a≤25000+25000 4900a≤50000

a≤50000/4900≈10.20亩

利润=3900a-(4900a-25000)×10% 3900a-(4900a-25000)×10%=36600 3900a-490a+2500=36600 3410a=34100 所以a=10亩

贷款(4900x10-25000)=49000-25000=24000元

三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?

解:设还需要B型车a辆,由题意得 20×5+15a≥300 15a≥200 a≥40/3

解得a≥13又1/3 .

由于a是车的数量,应为正整数,所以x的最小值为14. 答:至少需要14台B型车.

四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时? 解:设甲场应至少处理垃圾a小时

550a+(700-55a)÷45×495≤7370 550a+(700-55a)×11≤7370 550a+7700-605a≤7370 330≤55a a≥6

甲场应至少处理垃圾6小时

五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?

解:设有宿舍a间,则女生人数为5a+5人 根据题意 a>0(1)0

六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。

(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?

解:手机原来的售价=2000元/部 每部手机的成本=2000×60%=1200元 设每部手机的新单价为a元 a×80%-1200=a×80%×20% 0.8a-1200=0.16a 0.64a=1200 a=1875元

让利后的实际销售价是每部1875×80%=1500元

(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部? 20万元=200000元 设至少销售b部

利润=1500×20%=300元 根据题意 300b≥200000 b≥2000/3≈667部

至少生产这种手机667部。

七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表: 型号

占地面积(平方米/个)

使用农户数(户/个)

造价(万元/个)AB

已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.(1).满足条件的方法有几种?写出解答过程.(2).通过计算判断哪种建造方案最省钱?

解:(1)设建造A型沼气池 x 个,则建造B 型沼气池(20-x)个 18x+30(20-x)≥492 18x+600-30x≥492 12x≤108 x≤9

15x+20(20-x)≤365

15x+400-20x≤365 5x≥35 x≤7

解得:7≤ x ≤ 9

∵ x为整数 ∴ x = 7,8,9,∴满足条件的方案有三种.(2)设建造A型沼气池 x 个时,总费用为y万元,则: y = 2x + 3(20-x)= -x+ 60 ∵-1

当x=9 时,y的值最小,此时y= 51(万元)

∴此时方案为:建造A型沼气池9个,建造B型沼气池11个 解法②:由(1)知共有三种方案,其费用分别为:

方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53(万元)

方案二: 建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2 + 12×3 = 52(万元)

方案三: 建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2 + 11×3 = 51(万元)∴方案三最省钱.八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个? 解:设学生有a人 根据题意

3a+8-5(a-1)0(2)由(1)3a+8-5a+510 a>5 由(2)3a+8-5a+5>0 2a

九、某水产品市场管理部门规划建造面积为2400m²的集贸大棚。大棚内设A种类型和B种类型的店面共80间。每间A种类型的店面的平均面积为28m²月租费为400元;每间B种类型的店面的平均面积为20m²月租费为360元。全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。试确定有几种建造A,B两种类型店面的方案。解:设A种类型店面为a间,B种为80-a间 根据题意

28a+20(80-a)≥2400×80%(1)28a+20(80-a)≤2400×85%(2)由(1)

28a+1600-20a≥1920 8a≥320 a≥40 由(2)

28a+1600-20a≤2040 8a≤440 a≤55 40≤a≤55

方案:

A

B

……

55一共是55-40+1=16种方案

十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。某单位需购买5张桌子和若干把椅子(不少于10把)。如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱? 设需要买x(x≥10)把椅子,需要花费的总前数为y 第一种方案:

y=300x5+60×(x-10)=1500+60x-600=900+60x 第二种方案:

y=(300x5+60x)×87.5%=1312.5+52.5x 若两种方案花钱数相等时 900+60x=1312.5+52.5x 7.5x=412.5 x=55 当买55把椅子时,两种方案花钱数相等 大于55把时,选择第二种方案 小于55把时,选择第一种方案

第2篇:一元一次方程应用题及答案

一元一次方程应用题及答案

一元一次方程应用题

1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?

设慢车开出a小时后与快车相遇

50a+75(a-1)=275

50a+75a-75=275

125a=350

a=2.8小时

2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离。

设原定时间为a小时

45分钟=3/4小时

根据题意

40a=40×3+(40-10)×(a-3+3/4)

40a=120+30a-67.5

10a=52.5

a=5.25=5又1/4小时=21/4小时

所以甲乙距离40×21/4=210千米

3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?

解:设乙队原来有a人,甲队有2a人

那么根据题意

2a-16=1/2×(a+16)-3

4a-32=a+16-6

3a=42

a=14

那么乙队原来有14人,甲队原来有14×2=28人

现在乙队有14+16=30人,甲队有28-16=12人

4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率。

解:设四月份的`利润为x

则x*(1+10%)=13.2

所以x=12

设3月份的增长率为y

则10*(1+y)=x

y=0.2=20%

所以3月份的增长率为20%

5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人?

解:设有a间,总人数7a+6人

7a+6=8(a-5-1)+4

7a+6=8a-44

a=50

有人=7×50+6=356人

6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?

按比例解决

设可以炸a千克花生油

1:0.56=280:a

a=280×0.56=156.8千克

完整算式:280÷1×0.56=156.8千克

7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?

解:设总的书有a本

一班人数=a/10

二班人数=a/15

那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本

8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗?

解:设有a人

5a+14=7a-6

2a=20

a=10

一共有10人

有树苗5×10+14=64棵

9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?

解:设油重a千克

那么桶重50-a千克

第一次倒出1/2a-4千克,还剩下1/2a+4千克

第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油

根据题意

1/8a-5/3+50-a=1/3

48=7/8a

a=384/7千克

原来有油384/7千克

10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)

设96米为a个人做

根据题意

96:a=33:15

33a=96×15

a≈43.6

所以为2班做合适,有富余,但是富余不多,为3班做就不够了

11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。

解:设原分数分子加上123,分母减去163后为3a/4a

根据题意

(3a-123+73)/(4a+163+37)=1/2

6a-100=4a+200

2a=300

a=150

那么原分数=(3×150-123)/(4×150+163)=327/763

12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)

设水果原来有a千克

60+60/(2/3)=1/4a

60+90=1/4a

1/4a=150

a=600千克

水果原来有600千克

13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)

设原来有a吨

a×(1-3/5)+20=1/2a

0.4a+20=0.5a

0.1a=20

a=200

原来有200吨

14、王大叔用48米长的篱笆靠墙围一块长方形菜地。这个长方形的长和宽的比是5:2。这块菜地的面积是多少?

解:设长可宽分别为5a米,2a米

根据题意

5a+2a×2=48(此时用墙作为宽)

9a=48

a=16/3

长=80/3米

宽=32/3米

面积=80/3×16/3=1280/9平方米

5a×2+2a=48

12a=48

a=4

长=20米

宽=8米

面积=20×8=160平方米

15、某市移动电话有以下两种计费方法:

第一种:每月付22元月租费,然后美分钟收取通话费0.2元。

第二种:不收月租费 每分钟收取通话费0.4元。

如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢??

设每月通话a分钟

当两种收费相同时

22+0.2a=0.4a

0.2a=22

a=110

所以就是说当通话110分钟时二者收费一样

通话80分钟时,用第二种22+0.2×80=38>0.4×80=32

通过300分钟时,用第一种22+0.2×300=82<0.4×300=120

16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿。怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?

设a个工人加工桌面,则加工桌腿的工人有你60-a人

3a=(60-a)×6/4

12a=360-6a

18a=360

a=20

20人加工桌面,60-20=40人加工桌腿

17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离

设距离为a千米

a/(17/6)-24=a/3+24

6a/17-a/3=48

a=2448千米

18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地。乙从B地到A地,在A地停留40分钟后,又从A地返回B地。已知两人同时分别从A B两地出发,经过4小时。在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?

设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时

30分钟=1/2小时,40分钟=2/3小时

(4-2/3)a+(a+1.5)×(4-1/2)=12×3

10/3a+7/2a+21/4=36

41/6a=123/4

a=4.5千米/小时

甲的速度为4.5+1.5=6千米/小时

19、甲乙两人分别从相距7千米的AB两地出发同向前往C地,凌晨6点乙徒步从B地出发,甲骑自行车在早晨6点15分从A地出发追赶乙,速度是乙的1.5倍,在上午8时45分追上乙,求甲骑自行车的速度是多少。

解:设乙的速度为a千米/小时,甲的速度为1.5a千米/小时

15分=1/4小时,6点15分到8点45分是5/2小时

距离差=7+1/4a

追及时间= 5/2小时

(1.5a-a)×5/2=7+1/4a

5/4a=7+1/4a

a=7千米/小时

甲的速度为7×1.5=10.5千米/小时

20、在一块长为40米,宽为30米的长方形空地上,修建两个底部是长方形且底部面积为198平方米的小楼房,其余部分成硬化路面,若要求这些硬化路面的宽相等,求硬化路面的宽?

设硬化路面为a米

40a×2+(30-2a)×a×3=40×30-198×2

80a+90a-6a=804

3a-85a+402=0

(3a-67)(a-6)=0

a=67/3(舍去),a=6

所以路宽为6米

因为3a<40

a<40/3

第3篇:一元一次方程应用题复习题及答案

一元一次方程应用题复习题及答案

1、把200千米的水引到城市中来,这个任务交给了甲,乙两个施工队,工期50天,甲,乙两队合作了30天后,乙队因另有任务需离开10天,于是甲队加快速度,每天多修0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队每天比原来多修0.4千米,结果如期完成。问:甲乙两队原计划各修多少千米?

解:设甲乙原来的速度每天各修a千米,b千米

根据题意

(a+b)×50=200(1)

10×(a+0.6)+40a+30b+10×(b+0.4)=200(2)

化简

a+b=4(3)

a+0.6+4a+3b+b+0.4=20

5a+4b=19(4)

(4)-(3)×4

a=19-4×4=3千米

b=4-3=1千米

甲每天修3千米,乙每天修1千米

甲原计划修3×50=150千米

乙原计划修1×50=50千米

2、小华买了4支自动铅笔和2支钢笔,共付14元;小兰买了同样的1支自动铅笔和2支钢笔,共付11元。求自动笔的单价,和钢笔的单价。

解:设自动铅笔X元一支钢笔Y元一支

4X+2Y=14

X+2Y=11

解得X

未完,继续阅读 >

第4篇:一元一次方程应用题带答案

一元一次方程应用题带答案

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运.还要运几次才能完? 还要运x次才能完 29.5-3*4=2.5x 17.5=2.5x x=7 还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米? 它的高是x米 x(7+11)=90*2 18x=180 x=10 它的高是10米

3、某车间计划四月份生产零件5480个.已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个? 这9天中平均每天生产x个 9x+908=5408 9x=4500 x=500 这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班

未完,继续阅读 >

第5篇:一元一次方程应用题

一元一次方程的解法

(1)x+1.5-9x

85=0

24y12y5(2)y-=2-336

(3)

(4)

(5)

2311[3(x-)-3]-2=x 24214(1-x)-(2-)=2 3213x43x1.50.20.1-0.20x.03=2.5

未完,继续阅读 >

《一元一次方程应用题及答案.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
一元一次方程应用题及答案
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文