八年级数学分式与分式方程练习题
第1篇:八年级数学分式与分式方程练习题精选
八年级数学分式与分式方程练习题精选
一 认识分式
知识点一 分式的概念
1、分式的概念
从形式上来看,它应满足两个条件:
(1)写成 的形式(A、B表示两个整式)
(2)分母中含有
这两个条件缺一不可
2、分式的意义
(1)要使一个分式有意义,需具备的条件是
(2)要使一个分式无意义,需具备的条件是
(3)要使分式的值为0, 需具备的条件是
知识点二、分式的基本性质
分式的分子与分母都乘以(或除以)同一个
分式的值不变
用字母表示为 = (其中M是不等于零的整式)
知识点三、分式的约分
1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分
2、依据:分式的基本性质
注意:(1)约分的关键是正确找出分子与分母的公因式
(2)当分式的`分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(3)要会把互为相反数的因式进行变形,如:(x--y)2=(y--2)2
二、分式的乘除法
【巩固训练】
1、(2013四川成都)要使分式 有意义,则x的取值范围是( )
(A)x≠1 (B)x>1 (C)x<1 (D)x≠-1
2、(2013深圳)分式 的值为0,则 的取值是
A. B. C. D.
3、(2013湖南郴州)函数y= 中自变量x的取值范围是( )
A. x>3 B. x<3 C. x≠3 D. x≠﹣3
4.(2013湖南娄底,7,3分)式子 有意义的x的取值范围是( )
A. x≥﹣ 且x≠1 B. x≠1
C.
5.(2013贵州省黔西南州,2,4分)分式 的值为零,则x的值为( )
A. ﹣1 B. 0 C. ±1 D. 1
6.(2013广西钦州)当x= 时,分式 无意义.
7、(2013江苏南京)使式子1? 1 x?1 有意义的x的取值范围是 。
8、(2013黑龙江省哈尔滨市)在函数 中,自变量x的取值范围是 .
9、 (2013江苏扬州)已知关于 的方程 =2的解是负数,则 的取值范围为 .
10、(2013湖南益阳)化简: = .
11、(2013山东临沂,6,3分)化简 的结果是( )
A. B.
C. D.
12、 (2013湖南益阳)化简: = .
13、(2013湖南郴州)化简 的结果为( )
A. ﹣1 B. 1 C. D.
14、(2013湖北省咸宁市)化简 + 的结果为 x .
15、(2013?泰安)化简分式 的结果是( )
A.2 B. C. D.-2
考点:分式的混合运算.
分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.
16(2011年四川乐山).若 为正实数,且 , =
17(2013重庆市(A))分式方程 的根是( )
A.x=1 B.x=-1 C.x=2 D.x=-2
18、(2013湖南益阳)分式方程 的解是( )
A.x = B.x = C.x = D.x =
19、(2013白银)分式方程 的解是( )
A. x=﹣2 B. x=1 C. x=2 D. x=3
20、(2013江苏扬州)已知关于 的方程 =2的解是负数,则 的取值范围为 .
【答案】 且 .
21.(2013山东临沂)分式方程 的解是_________________.
22. (2013广东省)从三个代数式:① ,② ,③ 中任意选择两个代数式构造成分式,然后进行化简,并求当a=6,b=3时该分式的值.
23、(2013湖北孝感,19,6分)先化简,再求值: ,其中 , .
考点: 分式的化简求值;二次根式的化简求值.
24.(2013江苏苏州,21,5分)先化简,再求值: ,其中x= -2.
25.(2013贵州安顺,20,10分)先化简,再求值: ,其中a= -1.6.(2013山东德州,18,6分)先化简,再求值:
,其中a= -1.
26、.(2013湖南永州,19,6分)先化简,再求值: ,
【思路分析】先化简,再求值。
【解】原式=
=
=x-1
把x=2代入x-1=2-1=1
【方法指导】分式化简及求值的一般过程:
(1)有括号先计算括号内的(加减法关键是通分);
(2)除法变为乘法;
(3)分子分母能因式分解进行分解;
(4)约分;
(5)进行加减运算:①通分:关键是寻找公分母,②分子合并同类项;
(6)代入数字求代数的值.(代值过程中要注意使分式有意义,即所代值不能使
分母为零)
27.(2013广东珠海,12,6分)解方程: .
28、.(2013年陕西)(本题满分5分)
解分式方程: .
29.(2013山东日照,9,4分)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是
A.8 B.7 C.6 D.5
【答案】A
【解析】设甲计划完成此项工作的天数为x,由题意可得,
经检验x=8是原方程的根,且符合题意。
30、(2013深圳,8,3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。已知爸爸比小朱的速度快100米/分,求小朱的速度。若设小朱的速度是 米/分,则根据题意所列方程正确的是
A. B.
C. D.
31.(2013河北省,7,3分)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A.120x=100x-10 B.120x=100x+10
C.120x-10=100x D.120x+10=100x
32(2013江苏扬州,24,10分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:
(Ⅰ)九(1)班班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.”
(Ⅱ)九(2)班班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”
请根据两个班长的对话,求这两个班级每班的人均捐款数.
33(2013贵州安顺,21,10分)
某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路。实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程。求原计划完成这一工程的时间是多少个月?
第2篇:八年级数学《分式》(分式运算_分式方程)练习题
《分式》训练题一.解答题(共10小题)1.化简:(1)
(2)
(3)
(4)
.
2.计算; ①
②
3.先化简:;若结果等于,求出相应x的值.
4.如果,试求k的值.
.
5.(2011•咸宁)解方程
6.(2010•岳阳)解方程:
7.(2010•苏州)解方程:
8.(2011•苏州)已知|a﹣1|+
9.(2009•宁波)如图,点A,B在数轴上,它们所对应的数分别是﹣4,求x的值.
10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人?,且点A、B到原点的距离相等,=0,求方裎+bx=1的解.
. ﹣
=1.
.
©2010-2012 菁优网
答案与评分标准
一.解答题(共10小题)1.化简:(1)
(2)
(3)
(4).
考点:分式的混合运算;约分;通分;最简分式;最简公分母;分式的乘除法;分式的加减法。专题:计算题。分析:(1)变形后根据同分母的分式相加减法则,分母不变,分子相加减,最后化成最简分式即可;(2)根据乘法的分配律展开后,先算乘法,再合并同类项即可;
(3)先根据异分母的分式相加减法则算括号里面的,再把除法变成乘法,进行约分即可;(4)先把除法变成乘法,进行约分,再进行加法运算即可. 解答:解:(1)原式=﹣
﹣
=
=
=
=﹣ ;
(2)原式=3(x+2)﹣=3x+6﹣x =2x+6;
(3)原式=[== ; ••(x+2)
]•
©2010-2012 菁优网
(4)原式=•
+
===+
=1.
点评:本题主要考查对分式的混合运算,约分,通分,最简分母,分式的加、减、乘、除运算等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
2.计算; ①②
.
考点:分式的混合运算。专题:计算题。
分析:①首先进行乘方计算,然后把除法转化为乘法计算,最后进行乘法运算即可; ②运用乘法的分配律和完全平方公式先去括号,再算除法. 解答:解:①
=•(﹣)
==﹣②•(﹣;)
2=[﹣x﹣1+1﹣x﹣1+x+2]÷(x﹣1)
2=(x﹣1)÷(x﹣1)=x﹣1.
点评:考查了分式的乘除法,解决乘法、除法、乘方的混合运算,容易出现的是符号的错误,在计算过程中要首先确定符号.同时考查了分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.
3.先化简:
;若结果等于,求出相应x的值.
考点:分式的混合运算;解分式方程。专题:计算题。
分析:首先将所给的式子化简,然后根据代数式的结果列出关于x的方程,求出x的值.
©2010-2012 菁优网
解答:解:原式=
2=;
由 =,得:x=2,解得x=±.
点评:本题考查了实数的运算及分式的化简计算.在分式化简过程中,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.
4.如果,试求k的值.
考点:分式的混合运算。专题:计算题。
分析:根据已知条件得a=(b+c+d)k①,b=(a+c+d)k②,c=(a+b+d)k③,d=(a+b+c)k④,将①②③④相加,分a+b+c+d=0与不等于0两种情况讨论,所以k有两个解. 解答:解:∵,∴a=(b+c+d)k,① b=(a+c+d)k,② c=(a+b+d)k,③ d=(a+b+c)k,④
∴①+②+③+④得,a+b+c+d=k(3a+3b+3c+3d),当a+b+c+d=0时,∴b+c+d=﹣a,∵a=(b+c+d)k,∴a=﹣ak ∴k=﹣1,当a+b+c+d≠0时,∴两边同时除以a+b+c+d得,3k=1,∴k=.
故答案为:k=﹣1或.
点评:本题考查了分式的混合运算,以及分式的基本性质,比较简单要熟练掌握.
5.(2011•咸宁)解方程
.
考点:解分式方程。专题:方程思想。
分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
6.(2010•岳阳)解方程: ﹣=1.
©2010-2012 菁优网
考点:解分式方程。专题:计算题。
分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:去分母,得4﹣x=x﹣2
(4分)解得:x=3
(5分)检验:把x=3代入(x﹣2)=1≠0.
∴x=3是原方程的解.
(6分)点评:本题考查解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
7.(2010•苏州)解方程:
.
考点:换元法解分式方程;解一元二次方程-因式分解法。专题:换元法。
分析:方程的两个分式具备平方关系,设程.先求t,再求x. 解答:解:令=t,则原方程可化为t﹣t﹣2=0,2=t,则原方程化为t﹣t﹣2=0.用换元法转化为关于t的一元二次方
2解得,t1=2,t2=﹣1,当t=2时,当t=﹣1时,=2,解得x1=﹣1,=﹣1,解得x2=,经检验,x1=﹣1,x2=是原方程的解.
点评:换元法是解分式方程的常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法求解的分式方程的特点,寻找解题技巧.
8.(2011•苏州)已知|a﹣1|+=0,求方裎+bx=1的解.
考点:解分式方程;非负数的性质:绝对值;非负数的性质:算术平方根。专题:综合题;方程思想。
分析:首先根据非负数的性质,可求出a、b的值,然后再代入方程求解即可. 解答:解:∵|a﹣1|+=0,∴a﹣1=0,a=1;b+2=0,b=﹣2. ∴﹣2x=1,得2x+x﹣1=0,解得x1=﹣1,x2=.
经检验:x1=﹣1,x2=是原方程的解. ∴原方程的解为:x1=﹣1,x2=.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时考查了解分式方程,注意解分式方程一定注意要验根.
2©2010-2012 菁优网
9.(2009•宁波)如图,点A,B在数轴上,它们所对应的数分别是﹣4,求x的值.
考点:解分式方程;绝对值。专题:图表型。
分析:A到原点的距离为|﹣4|=4,那么B到原点的距离为4,就可以转换为分式方程求解. 解答:解:由题意得,解得经检验∴x的值为,是原方程的解,. =|﹣4|,且点A、B到原点的距离相等,点评:(1)到原点的距离实际是绝对值.正数的绝对值是它本身,负数的绝对值是它的相反数;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人? 考点:分式方程的应用。专题:应用题。
分析:设原计划参加植树的团员有x人,则实际参加植树的团员有1.5x人,人均植树棵树=树﹣实际人均植树棵树=2,列分式方程求解,结果要检验. 解答:解:设原计划参加植树的团员有x人,根据题意,得,用原人均植树棵解这个方程,得x=50,经检验,x=50是原方程的根,答:原计划参加植树的团员有50人.
点评:找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.
©2010-2012 菁优网
第3篇:八年级下册分式与分式方程练习题
分式与分式方程练习题
1、化简下列分式
-2ac24-a2x2-162x1-(1)
(2)
(3)
(4)222x-4x-2a-2a14abc2x+82、计算
5x-5y9xy22a2b5xy(-2xb)(1)
(2)
(3)
xy15x23x2yx2-y2
a2-b2a-bca11-
(6)-(4)
2(5)abbcx-33+x4a+12aba+3b
(7)
a3a+12a112abnn++(+)(-)(1+)(1-)
(8)
(9)222a-1a-11-aabbamm21m2+n2m2n2m-62m+2()(5n)(++2)(10)m1+2
(11)
m9m+3mnn2nm3、解方程
(1)111x-12x11=2+3==+
(2)
(3)x1x1x-2(4)xx21x24=1
(6)1x2+1=x+12x4
x23+x2x+35)13x6=34x8
(7)2x+3+32=72x+6
(
