来自等比数列的概念教学设计

2023-05-31 07:17:56 精品范文 下载本文

第1篇:来自等比数列的概念教学设计

来自等比数列的概念教学设计

作为一名老师,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?以下是小编整理的来自等比数列的概念教学设计,欢迎大家分享。

【教学目标】

知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。

能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。

情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。

【教学重点】

等比数列定义的归纳及运用。

【教学难点】

正确理解等比数列的.定义,根据定义判断或证明某些数列是否为等比数列

【教学手段】

多媒体辅助教学

【教学方法】

启发式和讨论式相结合,类比教学.

【课前准备】

制作多媒体课件,准备一张白纸,游标卡尺。

【教学过程】

【导入】

复习回顾:等差数列的定义。

创设问题情境,三个实例激发学生学习兴趣。

1.利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a>0)

2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列15 ,15×0.9 ,15×0.92 ,15×0.93 ,…,15×0.95。

3.复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.

学生探究三个数列的共同点,引出等比数列的定义。

【新课讲授】

由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。

等差数列:

一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用d表示.数学表达式:an+1-an=d

等比数列:

一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用q表示.数学表达式:an?1 an?q

知晓定义的基础上,带领学生看书p29页,书上前面出现的关于等比数列的实

例。让学生了解等比数列在实际生活中的应用很广泛,要认真学好。

在学生对等比数列的定义有了初步了解的基础上,讲解例一。给出具体的数列,会利用定义判断是否为等比数列。对(1)(5)两小题着重分析.

例题一

判断下列数列是否为等比数列?若是,找出公比;不是,请说明理由.

(1) 1, 4, 16, 32.

(2) 0, 2, 4, 6, 8.

(3) 1,-10,100,-1000,10000.

(4) 81, 27, 9, 3, 1.

(5) a, a, a, a, a.

讲解例二,进一步熟悉定义,根据定义求数列未知项。最后的小例一为了由利

用定义的求解转到利用定义证明,二为了让学生发现等比数列隔项同号的规律。

例题二

求出下列等比数列中的未知项:

(1) 2, a, 8;

(2) -4, b, c, ?;

已知数列2, x, d, y,8.是等比数列

①证明数列2, d, 8.仍是等比数列.

②求未知项d.

通过两道例题的讲解,让学生有个缓冲,做个巩固练习。当然此练习的安排,

也是为了进一步挖掘等比数列定义的本质,辨析找寻等差数列与等比数列的关系,将具体问题再推广到一般,并要求学生理解并掌握等比数列的判断证明方法。

练习

判断下列数列是等差数列还是等比数列?

(1) 22 , 2 , 1 , 2-1, 2-2 .

(2) 3 , 34 , 37, 310 .

引申:已知数列{an}是等差数列,而bn?2n

证明数列{bn}是等比数列。

由最后一例的证明,说明给出通项公式后可由定义判断该数列是否为等比数列。反过来若数列已经是等比数列了,能否由定义导出数列通项公式呢?为下节课做铺垫。

【课堂小结】

由学生通过一堂课的学习,做个简单的归纳小结。

1理解.等比数列的定义,判断或证明数列是否为等比数列要用定义判断

2.等比数列公比q≠0,任意一项都不为零.

3.学习等比数列可以对照等差数列类比做研究.

【作业】

1.书p48. No.1,2; a

第2篇:《等比数列》教学设计

《等比数列》教学设计

一、目的要求

1.理解等比数列的概念。

2.掌握等比数列的通项公式,并会根据它进行有关计算。

二、内容分析

1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。

这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。事实上,由等比数列的定义可知这个数列是非0数列。取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。

2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。

3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。

4.本课内容的重点是等比数列的概念及其通项公式。与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。

与等差数列一样,等比数列也具有一种对称性。对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。

利用上面的性质,常可使一些问题变得简便。例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;

三、教学过程

1.提出教科书中的数列①、②、③,让学生观察其特点。可问:这些数列是不是等差数列?如果不是,又有什么特点? 2.提出等比数列的概念。

在观察、概括上述数列特点的基础上,提出这一概念。并将这一概念与等差数列进行对比。

这里可安排一个“想一想”:等差数列的首项、公差均可以是0,等比数列的首项,公比可以是0吗?

由等比数列的定义可知,等比数列的首项、公比均不能为0,各项是0组成的数列不是等比数列。

3.归纳出等比数列的通项公式。让学生自己归纳,并可进行讨论。

在这过程中,如有必要可启发学生:如果等比数列的首项是,公比是q,那

么,如何表示?一般地,呢?

导出通项公式后,可指出像这样归纳得出的公式还不够严谨,学习后续有关知识后可对它进行严格证明。

4.讲例1。5.课堂练习。

做教科书本小节后的“练习”第l、2题。6.归纳总结。

为突出与等差数列的对比,可让学生自己填写下列表格 等差数列 等比数列 定义

通项公式

相应图象的特点

首项、公差(公比)取值有无限制

注:如果等比数列的公比q≠1,那么相应的图象是函数图象上的一群孤立点。

四、布置作业

习题3.4第1、3、4、5题。

第3篇:等比数列教学设计

等比数列教学设计

一、教学目标

1、知识与技能:通过教学使学生理解等比数列的概念,推导并掌握通项公式.2、过程与方法:使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.3、情感、态度与价值观:培养学生勤于思考,实事求是的精神,及严谨的科学态度.二、教学重点、难点

教学重点:等比数列的定义和通项公式

教学难点:在具体的问题情境中,发现数列的等比关系,并能灵活解决问题。

三、学法与教法

学法:兴趣→观察→分析归纳→得到猜想结论

教法:讲授法、引导发现法、类比探究法、讲练结合法

四、教学过程设计

活动

一、观察,找规律,给等比数列下定义

按规律写数

(1)3,6,12,24,____,____,____;(2)5,10,____,40,____,160,.(3)某种汽车购买时的价格是36万元,每年的折旧率是10%,求这辆车各

年开始时的价格(单位:万元)。

板书:等比数列的定义及符号语言

练习:判断下列数列是不是等比数列,并说明理由(1)1,2, 4, 16, 64, …(2)16, 8, 1, 2, 0,…(3)

未完,继续阅读 >

第4篇:等比数列教学设计

《等比数列》教学设计 第一课时

南郑中学 张小文

一、教材分析:

1、内容简析:

本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。

2、教学目标设计

知识与技能(1)使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。

(2)正确认识使用的表示法,能灵活运用通项公式求的首项、公比、项数及指定的项

过程与方法(1)培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。

(2)采用观察、思考、类比、归纳、探究、得出结论的方法进行教学

(3)发挥学生的主体作用,作好探究性活动

(4)密切联系实际,激发学生学习的积极性..情感、态度与价值观(1)培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。

(2)通过生活中的大量实

未完,继续阅读 >

第5篇:等比数列教学设计

新蔡二高教学设计 年级:15级 学科:数学 主备课人:徐德功 日期 2017年12月6日 课题:高三数学一轮复习 等比数列 1.了解等比数列的通项公式an与前n项和公式Sn的关系. 三 维

1、知识目标 2.能通过前n项和公式Sn求出等比数列的通项公式an. 教 学 目

2、能力目标 增强等比数列的认识,优化解题思路、解题方法,提升数学表达的能力。标

3、德育目标 培养学生认识数学的美。重点:熟练掌握等比数列的性质运用。难点::解题思路和解题方法的优化。教学过程:【知识精讲】

一、基本公式、性质 1.等比数列定义:一般地,如果一个数列从 起,每一项与它的前一项的比值等于同一个,那么这个数列就叫等比数列,这个常数q叫做等比数列的。2相关公式:(1)定义:an1(2)通项公式:ana1qn1推广:anamqnm q(n1,q0)an q1na1 aanq(3)前n项和公式:Sna1(1qn)Sn=1 q11q1q 3.等比数列{an}的一些性质(1

未完,继续阅读 >

《来自等比数列的概念教学设计.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
来自等比数列的概念教学设计
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文