排序不等式及证明_排序不等式的证明

2020-02-27 证明 下载本文

排序不等式及证明由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“排序不等式的证明”。

四、排序不等式

【】

(一)概念9: 设有两组实数

a1,a2,,an(1)b1,b2,,bn(2)满足

a1a2an(3)b1b2bn(4)另设

,cn(5)c1,c2,是实数组(2)的一个排列,记

逆序积和Sa1bna2bn1anb1 乱序积和S'a1c1a2c2ancn 似序积和S''a1b1a2b2anbn 那么

SS'S'' 且等式成立当且仅当a1a2an

或者

b1b2bn

证明【9】:

1,预备知识

引理1(Abel变换)设(1)(2)为任意两组有序的实数组,令

k

B00,Bk那么

n

b,i

i1

n1

akbkanBn(ak1ak)Bk

k1

k1

事实上:

n

n

akbk

k1

a

k1n1

k

(BkBk1)an(BnBn1)an1(Bn1Bn2)a1B1

anBn(anBn1an1Bn1)(an1Bn2an2Bn2)(a2a1)B1anBn(ak1ak)Bk

k1

引理2设实数组(2)满足(4)式,实数组(5)是实数组(2)的任意一个排列,那么显然有

k

k

k

bicibni1

i1

i1

i1

引理3设实数组(2)满足(4),那么

kk

bibni1

i1

i1

若存在1kmn使等号成立当且仅当b1b2bn

2,证明首先:

SS'a1(bnc1)a2(bn1c2)an(b1cn)不妨设

k

B00,Bk

(b

i1

ni1

ci)

那么由引理2,有Bk0,Bn0

则由Abel变换以及aiai1,得到(ak1ak)Bk0 所以

n1

'

n1

SSanBn(ak1ak)Bk(ak1ak)Bk0

k1

k1

即SS 同理,设

'

B00,Bk

''

k

(c

i1

i

bi)

则可证

S'S''a1(c1b1)a2(c2b2)an(cnbn)

n1

(ak1ak)B'k0

k1

要使得等号成立,即 SS'S''

则对k1,2,,n1,有

(ak1ak)Bk0

(ak1ak)B'k0 那么有下列两种情形:

(i)a1a2an

(ii)存在1mn1,使得a1a2am,amam1 这时必有

'

Bm0,Bm0 从而

m

m

ni1

m

ni1

Bm

(b

i1

ci)

b

i1

ci0

i1

Bm 所以

m

'

mm

i

m

i

i

(c

i1

bi)

cb

i1

i1

0

bni1

i1

b

i

i1

m

由引理3得

b1b2bn

排序不等式2

东安一中奥赛培训专题 《不等式的证明》陈雄武《排序不等式,琴生不等式》及应用1、(排序不等式):设有两组数a1,a 2,满,足,an,bb;,bn,12a1 a2an,b1b2bn,则有a1b1a2b2anbn (顺序和)a1b......

不等式证明

§14不等式的证明不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变形和......

不等式证明

不等式的证明比较法证明不等式a2b2ab1.设ab0,求证:2.ab2ab2.(本小题满分10分)选修4—5:不等式选讲(1)已知x、y都是正实数,求证:x3y3x2yxy2;(2对满足xyz1的一切正实数 x,y,z恒成立,求实数......

不等式证明

不等式证明不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变......

不等式证明

不等式证明1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法(1)作差比较:①理论依据a-b>0a>b; a-b=0a=b; a-ba⑴作差:对要比较大小的两个数(或式)作......

《排序不等式及证明.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
排序不等式及证明
点击下载文档
相关专题 排序不等式的证明 证明 不等式 排序不等式的证明 证明 不等式
[证明]相关推荐
[证明]热门文章
下载全文