陶瓷材料晶须增韧11_陶瓷增韧方法简述
陶瓷材料晶须增韧11由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“陶瓷增韧方法简述”。
金属强化理论课程论文
陶瓷材料的晶须增韧
摘要:晶须增韧机理 以及晶须增韧的应用 关键词: 1前言:
晶须强韧化是用高强度、高模量的陶瓷纤维与陶瓷基体构成陶瓷基复合材料,靠裂纹偏转弯曲、纤维脱粘、纤维拔出和纤维桥连等机制来达到模高陶瓷的韧性和强度的一种方法,这样的复合材料称做纤维增强陶瓷基复合材料。晶须对陶瓷的增强、增韧效果不仅取决于纤维和陶瓷本身的性能(强度、弹性模量、线胀系数等),而且还取决于两者间是否有良好的匹配性(物理和化学相容性)及界而的结合状态。因而有的陶瓷材料加入纤维后可能强度和韧性同时提高,而有的陶瓷材料则仅仅韧性提高而强度下降。因为对陶瓷来说.韧性往往显得要比强废更为重要,因此有时即便是复合后仅韧性提高而强度下降,摊的复合也是值得的。
2增韧机理
1.裂纹弯曲和偏转增韧
在裂纹扩展尖端应力场中,增强体会导致裂纹弯曲和倔转,从而使基体的应力场强度因子降低,起到阻碍裂纹扩展的作用。随增强体长径比的增加,裂纹弯曲增韧的效果增加。裂纹一般很难穿过晶须,更容易绕过晶须并尽量贴近表面而扩展,即裂纹发生偏转。裂纹偏转增韧示意图见图7—25。
裂纹偏转后受的拉应力往往低于偏转前的,而且裂纹的扩展路径增长,裂纹扩展中需消耗更多的能量,因而起到增韧的作用。裂纹偏转可以绕着晶须倾斜偏转或扭转偏转,一般认为,裂纹偏转增韧主要是扭转偏转机制起作用。
2.晶须脱粘增韧
在复合材料中,晶须或短纤维脱粘会产生新表面,因此需要能量,见图7—26。尽管单位面积的表面能很小,但所有脱粘纤维总的表面能则很大。假设纤维的脱粘能等于应力释放引起的纤维上的应变释放能,则每根纤维的脱粘能为:
金属强化理论课程论文
其中:d为纤维直径人为纤维临界长度14为纤维拉伸断裂强度;Zf为纤维弹性模量。将纤维体积
代人,则可求出单位面积的最大脱粘能QD:
由上述分析可知,若想通过纤维脱粘达到最大增韧效果,应使纤维体积含量增高,Lc要大,即纤维与基体的界面要弱。因为Lc与界面应力成反比。
3.晶须桥连增韧
对于特定位向和分布的晶须,裂纹很难偏转.只能沿着原来的扩展方向继续扩展,如图7—28所示。这时紧靠裂纹尖端处的晶须并未断裂,而是在裂纹两侧搭桥,使裂纹表面产生一个压应力.以抵消外加拉应力的作用,从而使裂纹难以进一步扩展,起到增韧作用,即纤维桥连增韧。
金属强化理论课程论文
4.晶须拔出增韧
晶须拔出,是指靠近裂纹尖端的晶须或短纤维在外力作用下沿着它和基体的界面滑出的现象。纤维拔出示意图见图7—27。很显然纤维首先发生脱粘才能拔出。纤维拨出会使裂纹尖端应力松弛,从而减缓了裂纹的扩展。纤维的拔出需要外力作功,因此起到增韧作用。
提高界面的结合强度会提高纤维的拔出效应对韧性的贡献。如果纤维与基体间的结合太弱,稍受力纤维就从基体中拔出.基体无法把外界载荷传递给纤维,纤维不能成为承受载荷的主体,因面强韧化效果差,甚至可能围结合稀松,纤维的存在类似于孔洞,反而会降低强度和韧性;反之如果纤维与基体的界面结合强度过高,则不能发生纤维与基体的界面解离(裂纹偏转的一部分)和纤维的拔出,材料将以灾难性的脆性方式断裂面不是以韧性方式断裂,虽然可以提高强皮但不能提高韧性。因此,影响增韧效果最为关键的问题之一是界面强度,此界面强度应适中,不能高于纤维的断裂强度。
3影晌Sic晶须增韧的因素
金属强化理论课程论文
3.1界面性质
3.1.1界面的物理相容性
界面的物理相容性是指纤维与基体问弹性模量和线胀系数的关系。在cMc材料中,纤维和基体一般是不同的物质,因而线胀系数和弹性模量通常是不同的,即使是同种物质(如SiC纤维和SiC陶瓷基体),因晶体结构不同或各向异性,其线胀系数和弹性模量也会有所不同,而线胀系数和弹性模量的差异会对纤维强韧化的效果产生非常重要的影响。由于材料在烧结后的冷却过程中,因线胀系数不同,在界面上会产生残余应力和残余应变,甚至可能因陶瓷基体本身的脆性(大多数陶瓷材料的断裂应变值小于o.05%)面出现微裂纹,这种现象称为热失配。残余应力正比于∆a∆T,其中∆a=af-am,af和am分别为纤维和基体的线胀系数;∆a是烧结象度与当前温度的差值。若∆a>o,即纤维线胀系数大于基体线胀系数时,纤维沿轴向受拉应力,基体受压应力,纤维产生一定的预拉应力,成为载荷 的主要承载者,有利于强度和韧性的提高;反之若∆a<0,纤维沿轴向受压应力,基体受拉应力,当材料受外力作用时,纤维不能先于基体象提载荷,不利于强韧化。因此对同一种纤维,基体的线胀系数小,强韧化效果好。在应变相同的情况下,若纤维的弹性模量比基体大,纤维将分提大部分载荷,从面有利于强韧化;反之若纤维弹性模量小于基体的,则纤维的作用不能充分发挥出来。
因此一般要求Ef>Em、和af>am、Ef、Em、af、am分别为纤维和基体的弹性模量和线胀系数。
3.1.2界面的化学相容性
界面化学相容性是指在烧结和使用温度下,纤维与基体间不发生化学反应及纤维性能在该温度下不致退化,否则纤维的增强韧补作用将要降低,面且还会因由此结材料带来的缺陷导致材料的性能下降。因此有必要研究纤维与基体之间界面的结合方式及其对材料性能的影响。
纤维与基体的界面结合有两种,一种是物理结合,一种是化学结合。当界面为物理结合时,界面两相仅为机械咬合.界面结合强度较低,这时只须考虑弹性模量和绥胀系数的匹配性即可,而无须考虑化学相容性。而当界面为化学结合时,界面有新相生成.且购相间为化学键相接,界向结合强度较高,不易发生界面解离和纤维拔出,有利于增强、增韧。但若界面结合过强(超过纤维强度),不能发生界固解离和纤维拔出,只能导致纤维断裂;过多的纤维断裂,必将导致材料以脆性方式断裂,虽然可提高强度,但却不能提高韧性。
实际上,在正常的烧结温度下.纤维一般不会与陶瓷基体发生全面的化学反应而损害纤维的整体性能,但往往会与基体发生—定的界面反应,形成过强的界面强度:比如碳纤维就会与多种陶瓷特别是氧化物陶瓷形成过强的界面。因此,为获得良好的增韧效果,通常要对纤维进行适当的表面涂层处理,以起隔离作用,防止形成过强的界面。
3.2 晶须的性能
3.2.1 晶须尺寸要从晶须的长径比来考虑。随着晶须长径比的增加,晶须完整性越好,金属强化理论课程论文
结构中所包含的缺陷也会减少,晶须性能越高。但是晶须长径比越小导致单位体积用量的增多和界面面积增大,在基质中不易分布均匀,造成复合困难。总之复合材料对SIC晶须的共同要求是:完整的p一SIC晶须单晶含量高,直晶率高,弯晶和复晶的含量低,晶须的直径、长短和长径比的分布均匀性好,晶须中的缺陷少,杂质的含量低。
3.2.2 晶须含量晶须含量的不同将影响到增韧机理和复合材料的断裂模式。如果晶须含量过高,易形成团聚,在基体中分散不均匀,复合材料的断裂韧性值不会太高;反之如果晶须含量过低,不但起不到增韧的作用,反而成为多余夹杂甚至成为缺陷源。因此晶须只在在一定的含量下,才能有效实现增韧作用,根据简化模型可以计算晶须的最佳配比。
3.2.3晶须强度增韧效应分析显示晶须的强度是很重要的。根据前人研究表明,随着晶须强度的增加,桥接增韧效应也增加。同样拔出效应也随晶须强度增加而增加。而含缺陷的晶须导致增韧效果降低。
3.2.4 晶须排布晶须在基体中的排布方向对增韧效果影响很大。实践证明:当晶须增韧陶瓷刀具材料,晶须排布平行于前刀面时,晶须径向受拉,造成界面脱离基体,起不到增韧的效果;当晶须排布垂直于前刀面时,晶须轴向受拉,通过裂纹偏转和拔出效应吸收裂纹扩展能量,起到增韧的效果。SiC增强陶瓷基材料的研究与应用
碳化硅晶须增强陶瓷材料的研究中,开始主要以Al2O3,ZrO2,莫来石等为基体材料,随着复合技术的不断成熟,基体材料又出现了Si3N4等非氧化物材料。碳化硅晶须的加入使复合材料的断裂韧性、抗弯强度等性能有明显的改善。
SiC晶须增韧氧化铝陶瓷
氧化铝陶瓷具有熔点高、硬度高、耐磨、结构稳定等优点,但其强度较低。用SiC晶须增强氧化铝的研究首先是由Becber于1984年报道的。实验证明[8],当SiC晶须的体积分数为20%时,SiCw/Al2O3复合材料的弯曲强度达508MPa,断裂韧性KIC为8.78MPa·m1/2,比纯铝的KIC提高了近一倍。碳化硅晶须补强后从而进一步拓宽了氧化铝的用途,目前已被应用于磨损部件、切削刀具和内燃机的某些构件。其中SiC晶须增韧的陶瓷切削刀具材料,以其良好的断裂韧性和抗热冲击性能在切削高温合金等难加工材料方面表现了优异的性能,延长了刀具的使用寿命,切削效率远高于普通刀具,应用潜力巨大。但目前用于刀具的SiC晶须增强氧化铝陶瓷还存在以下两个问题题:一是SiC晶须在切削加工时能与金属钛和铝发生化学反应,而不适合金属钛和铝工件的加工;二是切削温度超过1000℃,SiC晶须也会与钢发生化学反应,产生硅化铁,使刀具很快磨损[9]。
3.2 SiC晶须增韧氧化锆陶瓷
四方氧化锆陶瓷增韧之源是氧化锆中的相变,因而增韧效果受温度的制约。但在中高温条件下为热力学稳定期,其相变增韧作用消失。而且,由于其断裂应力与相变临界应力相互制约,强度和断裂韧性值往往不能同时达到最大,晶须补强效应被认为是弥补该材料上述缺陷的最有效的方法之一[10]。王双喜等[11]研究发现,在2mol%Y2O3-超细料中加入30vol%的SiC
金属强化理论课程论文
晶须,可以细化2Y-ZrO2材料的晶粒,并且使材料的断裂方式由沿晶断裂为主变为穿晶断裂为主的混合断裂,从而显著提高了复合材料的刚度和韧性。氧化锆增韧陶瓷可用来制造发动机构件,如连杆、轴承、汽缸内衬等,此外,由于其隔热性能优异、线膨胀系数高(与金属相当),故在隔热发动机上可作为金属的匹配件材料。
3.3 SiC晶须增韧莫来石陶瓷
莫来石是Al2O3-SiO2二元体系中唯一在常温和高温条件下都稳定的晶相,是一种重要的结构和功能陶瓷候选材料,目前已成为先进陶瓷来石材料的弯曲强度和断裂韧性都比较低,从而影响了其实际应用。中科院上海硅酸盐研究所的黄政人等[12]采用30vol%βSiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10%左右为570MPa,断裂韧性为4.5Mpa·m1/2比纯莫来石提高100%以上。吕林等[9]的研究将莫来石陶瓷材料的增韧补强与发动机低应力化设计结合起来,所研制的6150无水冷发动机经过700h台架耐久考核实验,耐久性试验的时间达到了国际领先水平。
3.4 SiC晶须增韧氮化硅陶瓷
SiC晶须增韧Si3N4陶瓷是提高其断裂韧性和稳定性的主要途径之一。已有的研究表明[13]晶须增韧效果不仅取决于晶须的分散程度、晶须尺寸和体积分数,而且与晶须的空间位置及方向性密切相关。Wang Chang an[14]等对SiC晶须的氮化硅基复合材料中晶须取向的研究表明,当晶须方向基本一致且晶须与基体界面弱连接时,此方向中的断裂韧性具有极大值,抗折强度和断裂韧性分别为1038MPa和10.7MPa·m1/2;王东方等[15]在氮化硅增韧的实验中发现,SiCw/Si3N4的硬度达22GPa,断裂韧性为10MPa·m1/2,分别比纯氮化硅提高了10%和近两倍。氮化硅陶瓷的一系列优异的物理机械性能及化学性能,在高温结构材料、工具陶瓷材料、耐磨陶瓷材料和耐磨腐蚀陶瓷材料等方面,具有极大的市场和应用潜力。随着晶须增韧研究的不断深入,氮化硅陶瓷在刀具、轴承、发动机、绝缘材料等方面的应用将会更加完善。
3.5 SiC晶须增韧其它陶瓷材料
近年来的研究证明,SiC晶须在增强钛酸铝陶瓷、氧化锌陶瓷、石英玻璃、多孔硅陶瓷等实验中都得到了较好的增韧效果,此外,在增韧金属基复合材料和高分子材料中也有广泛的应用。
瞿峻[1],熊惟皓研究Sic晶须增强Ti(C,N)基金属陶瓷的结果表明,当微米级SIC晶须的添加量为1%时,抗弯强度和断裂韧性达到最高,分别为1905MPa和9.SMPa.m1/2,随着晶须添加量的增加,其力学性能呈下降趋势。
丁燕鸿,杨杨[2]采用SIC晶须作为增韧剂,以金属粘结相和碳化物硬质相作为添加剂,经过混合成型后,采用真空烧结法制备出新型的SIC晶须增韧Ti(C,N)基金属陶瓷复合材料刀具(牌号为TN3OW)。对TN3衅切削刀具材料的成分、制备工艺、显微组织结构进行了实验研究和理论分析。结果表明:与TN30切削刀具相比,TN30W刀具材料具有更高的硬度值、更好的抗弯强度和断裂韧性等优良的性能;在SIC晶须含量为15%、烧结温度为1470℃
金属强化理论课程论文
时,TN3OW切削刀具能获得最佳的综合力学性能,特别是抗弯强度和断裂韧性得到明显的提高。
刘宗伟,张建华[3]对HAP/siCw复合生物陶瓷的微观结构和力学性能进行了研究。研究了晶须含量和晶须取向对复合材料微观结构和力学性能的影响。分析了晶须取向对复合材料力学性能的影响,发现SICw择优分布在垂直于热压面内,材料在平行于热压面的方向上力学性能最好,在垂直于热压面的方向上力学性能最差。
张淑婷,姚广春[4] 本文首次研究了添加SIC晶须制备SICwN/FiZeO;陶瓷复合材料。结果表明,SIC晶须的添加起到了良好的补强效果。加入SIC晶须后抗热震性有所下降,显著提高了试样抗冲击性能,冲击断口有明显的纤维脱粘及拔出现象,其增强机理为纤维的脱粘和拔出效应。SIC纤维的加入使试样的抗折强度略有上升。添加SIC纤维能够显著提高试样的抗热震性,残余抗折强度保持率随着纤维添加量的增加显著上升。界面的分析结果表明,复合材料界面是纤维与基体之间形成的互扩散层,界面结合牢固,使复合材料力学性能提高。
郑建智,郑勇[5] 研究了三种晶粒长大抑制剂和SiC晶须对金属陶瓷组织和性能的影响,得出如下结论:加入Cr3C2、VC对金属陶瓷晶粒的细化作用不明显,而加入TiC后,硬质相聚集,气孔率增加,力学性能较差;加入0.5 wt.%SiC晶须后,金属陶瓷晶粒细小,组织均匀,抗弯强度、硬度和断裂韧性都较高。而随着晶须加入量的增加,界面的润湿性降低,孔隙率增加,力学性能急剧降低。
赵永乐,郑勇[6]研究了SiC晶须添加量对Ti(C,N)基金属陶瓷显微组织和力学性能的影响。结果表明:SiC晶须添加量为1.0wt%时,可使晶粒细化,显著提高金属陶瓷的强韧性,比金属陶瓷基体分别提高了24%、29%;SiC晶须增韧金属陶瓷的机理主要是裂纹偏转、晶须的拔出及晶须的桥联增韧。
罗学涛,陈小君等[7]通过SIC晶须在载体纤维中定向挤出和热压烧结工艺制备了高度定向SIC晶须增韧Si3N谧复合材料,实验结果表明,70%以上SIC晶须的定向角在0~100之间,具有较好的方向性.过高的烧结温度和晶须含量使材料抗弯强度降低·晶须定向方向的断裂韧性(单边切口垂直于定向晶须)比横向方向高出20%.1000和SO0oC温差的热震实验表明,定向SIC晶须复合材料比随机SIC晶须复合材料的抗热震性能高得多。
曹玉军,刘 杰[8]通过正交试验法对WC/SiCW陶瓷复合材料进行了成分和热压工艺参数优化,经优化制备的该类复合材料与纯WC材料相比,抗弯强度提高了约50%,断裂韧性提高了30%~40%,维氏硬度提高了10%~15%。切削试验数据证明,本试验制得的WC/SiCW复合陶瓷刀具材料的车削性能优于同类型硬质合金材料,表明通过SiCW替代金属粘结相来增韧补强WC陶瓷刀具材料的方法是可行的。
丁燕鸿,刘建文[9]主要研究了不同的SiC晶须(简称SiCw)加入量和真空烧结温度对Ti(C,N)基金属陶瓷复合材料性能的影响,并对SiCw的增韧机理进行了探讨。结果表明:在SiCw的质量分数为15%、真空烧结温度为1470℃时,SiCw增韧Ti(C,N)基金属陶瓷复合材料
金属强化理论课程论文的综合力学性能最佳;材料中存在裂纹偏转、裂纹桥接和晶须拔出等增韧机理。
魏源迁,山口胜美等[10]为了考察使用SiC晶须作为磨料和酚醛树脂结合剂制成的一种SiC晶须砂轮砂轮的磨削特性对难加工材料如模具钢SKD11(HRC60)进行了大量的磨削试验。试验结果表明该砂轮不仅具有很高的磨削比(6000以上)和磨削效率,而且能获得纳米级加工表面(Ra1.5nm/Ry16nm)。
王海龙,汪长安等[11]研究了SiCW和SiCP的添加量对于SiC/ZrB2陶瓷材料的显微结构、力学性能的影响,并分析了SiCW和SiCP对ZrB2陶瓷力学性能影响的协同作用和增韧机制。结果表明SiC/ZrB2复合材料强度和韧性提高的原因在于SiCW和SiCP抑制ZrB2晶粒长大,促进ZrB2的致密化,此外, SiCW和SiCP的协同作用也有助于材料韧性的提高。
聂立芳,张玉军,魏红康
5晶须增韧陶瓷基复合材料的应用
SICw是金属基、陶瓷基和聚合物基等先进复合材料的增强剂,能够提高复合材料的强度、韧性、硬度、耐热性、耐磨性、耐蚀性和触变性等。还具有导电、绝缘、抗静电、减振、阻尼、隔音、吸波、防滑、阻燃等多种功能[5]。能够制造高性能的工程塑料、复合材料、胶粘剂、密封剂等,有着广泛的用途。SICw是已合成晶须中硬度最高、模量最大、抗拉强度最大、耐热温度最高的晶须产品。陶瓷种类繁多,基体材料性能复杂,在不同条件下其补强增韧机理不同,并且在很大程度上是取决于晶须一基体之间的界面结合情况,用SIC晶须作为增强体时,复合材料的性能会因基体的不同而不同,相应的也就有了不同的用途。见上表1一2。展望
SiC晶须增强陶瓷基复合材料始于上世纪80年代后期。近年来,随着研究的深入和技术的进步,其发展十分迅速,在机械、电子、航天等领域得到了推广和应用。然而SiC晶须在实际应用中还存在几方面问题:(1)晶须在基体中分散的均匀工艺提出了较高的要求。(2)烧结过
金属强化理论课程论文
程致密化。SiC晶须增韧陶瓷基复合材料中,晶须含量高则韧性越大,但就目前的烧结工艺而言,只能制备晶须含量少于30%的材料,因此,如何改善工艺提高烧结过程的致密化是有待解决的问题。(3)不管是何种增韧机制,增韧都是外加应力在晶须-基体界面附近被部分吸收的结果。因此,有效的提高界面结合状态是提高增韧效果的重要环节。对晶须进行表面处理或在坯体中添加剂的加入将是未来研究的重点。此外,SiC晶须产量小、成本高等缺点也是限制其应用的一个因素。[12]
参考文献
1.瞿峻,熊惟皓,柯阳林,刘文俊,叶大萌,姚振华.纳米SiC晶须增强Ti(C,N)基金属陶瓷的显微组织与力学性能.机械工程材料, 2009: 66-69.2.丁燕鸿,杨杨.SiC晶须/颗粒增韧金属陶瓷切削刀具的研究.株洲工学院学报, 2006, 04: 66-68.3.纳米羟基磷灰石_SiC晶须复合生物陶瓷材料及其加工.4.纤维增强NiFe_2O_4基阳极材料的制备及性能研究.5.高性能Mo_2FeB_2基金属陶瓷的制备工艺及合金化研究.6.高强韧性Ti_C_N_基金属陶瓷制备技术的研究.7.罗学涛,陈小君,黄前军,陈立富.定向SiC晶须增韧Si_3N_4陶瓷的制备及热震性能研究.无机材料学报, 2004, 03: 107-112.8.SiC晶须增韧WC陶瓷刀具材料的研究.9.丁燕鸿,刘建文.SiC晶须增韧Ti(C,N)基金属陶瓷复合材料的研究.粉末冶金技术, 2007, 04: 17-19+26.10.SiC晶须砂轮的开发及其磨削特性.11.纳米SiC晶须和SiC颗粒混合增韧ZrB_2陶瓷性能.12.SiC晶须增韧陶瓷基复合材料的研究进展.
晶须增韧陶瓷复合材料研究进展芦珊(学号07093095) 电力系统及其自动化09-1班信息与电气工程学院摘要综述了晶须增韧陶瓷复合材料的制备方法和分类;讨论了晶须陶瓷基复合材料的......
PA66增韧剂:适用于PA/PE、PA/PP合金,可大大提高合金的韧性,用于PC、ABS、PET、PBT等及其合金材料的相容剂与增韧剂,南京塑泰有生产。性能指标:外观:白色透明颗粒接枝率:1.0~1.3MA%熔......
增韧剂系列:(又称为:增韧母料、增韧料、弹性体、弹簧料、改性剂)厂家直销 增韧剂特点:可与塑料混合抽粒,直接添加成型等多种加工方式。增韧剂与塑胶混合在不影响塑料本身物性的前......
如何让“持续不断抓有效坚定不移抓增员”转化为生产力寿险经营是一个复杂的系统工程,它围绕人力资源的开发和运用、激励机制的形成、管理制度的发展和完善、教育训练水平的提......
如何让“持续不断抓有效坚定不移抓增员”转化为生产力寿险经营是一个复杂的系统工程,它围绕人力资源的开发和运用、激励机制的形成、管理制度的发展和完善、教育训练水平的提......
