二项式定理_二项式定理二
二项式定理由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二项式定理二”。
代数教案--二项式定理(2)
王新敞
二项式定理
教学内容及教学目标:
二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.
中学教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.
通过二项式定理的学习应该让学生掌握有关知识,同时在求展开式、其通项、证恒等式、近似计算等方面形成技能或技巧;进一步体会过程分析与特殊化方法等等的运用;重视学生正确情感、态度和世界观的培养和形成. 课时安排:
约6个课时:定理1课时;通项公式1课时;
二项展开式性质2课时(杨辉三角.对称性,增减性,系数和等); 综合运用2课时(证等式及特殊化方法;证整除,求近似值等). 重难点分析: 二项式定理本身是教学重点,因为它是后面一切结果的基础.通项公式,杨辉三角,特殊化方法等意义重大而深远,所以也应该是重点.
二项式定理的证明是一个教学难点.这是因为,证明中符号比较抽象、需要恰当地运用组合数的性质
2、需要用到不太熟悉的数学归纳法. 设计思想: 先熟悉定理中展开式各项系数的规律,后一节再用数学归纳法证明,以分散难点.
在教学中,努力把表现的机会让给学生,以发挥他们的自主精神;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习.
新疆奎屯市一中
第1页(共6页)代数教案--二项式定理(2)
王新敞
第2课时
二项式定理的证明和通项公式
一、教学内容:
二项式定理的证明和通项公式
二、教学目标:
1.掌握二项展开式的通项公式 2.培养推理证明的能力; 3.引导学生发展与创新的意识.
三、重点和难点:
重点:二项式定理的证明、通项公式等; 难点:二项式定理的证明。
四、教学过程: 1.复习上节内容
二项式定理:
1n12n22rnrrnnabnCn0anCnabCnabCnabCnb 012n二项式系数:Cn,Cn,Cn,,Cn.2.新授
二项式定理的证明:用数学归纳法证明
1⑴当n=1时,等式的左边是ab=ab ;等式的右边是C10aC1b=ab.1于是,当n=1时等式成立.⑵假设nk时等式成立,即
abk0k1k1CkaCkabCk2ak2b2CkrakrbrCkkbk
当nk+1时
abk1=abkab1
=(CkaCka0k1k1bCk2ak2b2CkrakrbrCkkbk)(ab)
新疆奎屯市一中
第2页(共6页)代数教案--二项式定理(2)
王新敞
0k11k =CkaCkabCk2ak1b2Ckr1akrbr1Ckkabk 0k11k12 +CkabCkabCkrakrbr1Ckk1abkCkkbk1 0k1101 Cka(CkCk)akb(Ck2Ck)ak1b2(Ckr1Ckr)akrbr1
(CkkCkk1)abkCkkbk1
由组合数的性质,得到
1krr1k1k1abk1Ck01ak1Ck11akbCk21ak1b2CkrabC1k1b这就是说,当nk+1时等式成立。
根据⑴、⑵,可知对于任意自然数n,公式都成立。
在数学中同一个式子可以有多种不同的看法,如ab中的两个字母可以看
5b成是对等的,xa括号中的两项则可以看成有主从,a51括号中的两
a55项则有常数与变数之分.
rnrr通项公式:Tr1Cnab.(r0,1,2,,n)
通项是所有项的代表,具有典型和核心作用.很多问题都是通过分析通项而窥知全体具有的规律的.
对于以公式的形式给出的知识,抓住公式的特征是必要的.通项公式中,Tr+1是项的标志,注意其下标是r+1而非r;右边的二项式系数是个组合数,其下标是n,上标是r,上标比Tr+1的下标小1;右边a与b的指数和为n,且a 的指数是n-r,b的指数是r.
对于公式,又一个重要的认识方法是把它抽象地看作几个有关参数的方程,从而知道其中的几个量就可以求另外的量.以二项展开式的通项公式而论,其中含有a,b,n,r,T五个量,显然,知道其中的几个或他们的某些关系,可以求另外的几个.
新疆奎屯市一中
第3页(共6页)代数教案--二项式定理(2)
王新敞
3.例题分析
例1.利用二项式定理展开pq.n(意在:出现中间是-号的情况.)引导发现:符号相间的规律.
13例2.求x的展开式中x的系数.x1r9r解:展开式的通项是
C9x(1)rC9rx92r.x根据题意,得
92r3
r=3
3因此,x的系数是
(1)3C9=-84 39r例3.在(ax+1)7的展开式中x3的系数是x2与x4的系数的等差中项,若实数a>1,那么a=______.
解:∵在(ax+1)7的展开式中x3的系数是x2与x4的系数的等差中项,523443∴C7aC7a2C7a
∵ a>1,∴a=14.练习
1.(10. 5xa2ax)6的展开式中,第五项是…………()
1520156x
2A.
B.C.D.xxxa2.(3a1a)15的展开式中,不含a的项是第()项
A.7
B.8
C.9
D.6 新疆奎屯市一中
第4页(共6页)代数教案--二项式定理(2)
王新敞
3.二项式(z-2)6的展开式中第5项是-480,求复数z.4.求二项式(33412)7的展开式中的有理项.325.求x14x16x14x1.(意在:体现公式应该会逆用.同时,注意向已知方向化归.)解:原式[x14x16x14x11]1
432x111
4x41.5.小结:(1)、二项式定理蕴含着丰富的数学美,它有巧妙的数形结合美、抽象的美、奇异的美、统一的美等等。我们在学习数学时要逐步学会欣赏数学的美;(2)、二项式定理中的a、b是很有变化的,在具体问题中如果能找到它们是怎样变的,那么就找到了解决问题的关键。(3)、二项式系数与二项式展开式系数是不同的两个概念。(4)、通项公式的作用不小,在以后的学习中会经赏常用到它。
6.布置作业: 7.课后检测
1(x)9x的展开式中含x3的项是
.1.10(3ix)2.二项式的展开式中的第八项是………()7332403ix3603ix
A.-135x3
B.3645x2
C.D.2457(35)3.的展开式中的整数项是…………()
A.第12项
B.第13项
C.第14项
D.第15项
(3x4.22)n展开式中第9项是常数项,则n的值是()
A.13
B.12
C.11
D.10 新疆奎屯市一中
第5页(共6页)代数教案--二项式定理(2)
王新敞
5.(2di)的展开式中的第7项是……………()
A.2882d
B.-2882d
C.-672d3i
D.672d3i 229(2x36.110)2x展开式的常数项是
.(|x|7.12)3|x| 展开式的常数项是
.(8.在xb3)18bx的展开式中,第项是中间项,中间项是
.9.已知(10+xlgx)5的展开式中第4项为106,求x的值.*10.若(1-2x)5展开式中的第2项小于第1项,且不小于第3项,求实数x的取值范围.新疆奎屯市一中
第6页(共6页)
刀豆文库小编为你整合推荐7篇二项式定理说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
《二项式定理》说课稿作为一名优秀的教育工作者,常常要根据教学需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。说课稿应该怎么写呢?下面是小编精心整理的《二项式定理......
二项式定理说课稿一、教材分析:1、知识内容:二项式定理及简单应用2、地位及重要性二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是......
刀豆文库小编为你整合推荐6篇《二项式定理》说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
二项式定理知识点(共6篇)由网友“月河”投稿提供,以下是小编给大家整理的二项式定理知识点,欢迎大家前来参阅。篇1:二项式定理教学反思 6月20日下午我和安阳实验中学高二(17)班的同......
