场流分离技术_fff场流分离技术应用
场流分离技术由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“fff场流分离技术应用”。
场流分离技术的研究
专业:化学工艺
学生:田盼盼
201220714
邵
菲
201220715
场流分离技术的研究
摘要:场流分离是一种方便快捷的分析分离技术,它具有设备简单,应用广泛,效率高等优点。该文介绍了场流分离原理及理论,描述了场流分离设备的主要结构,着重讲述了电场流分离、热场流分离、沉降场分离、流场流分离的方法及应用。比较了不同场流分离技术的差异,展望了场流分离发展的方向。
关键词:场流分离,电场流分离,热场流分离,沉降场分离,流场流分离
1.场流分离介绍
近年来,人们将不同的场垂直地加在一个速度分布为特殊形状的液流中,发明了一种新的分离方法。1966年美国犹他大学的吉廷斯(Giddings)教授首次报导了这个方法,并把它命名为场流分离(FFF)。十多年来,该法得到了迅速的发展,很多文献报导了这方面的研究成果。不仅在理论上对场流分离进行了大量的研究,而且还探讨了这种方法在分离大分子、胶体颗粒和微细颗粒方面的应用。场流分离是一种方便快捷的分析分离技术,它具有设备简单,应用广泛,效率高等优点。
2.场流分离系统组成场流分离系统一般由载液及样品注入装置,分离系统,检测分析系统,收集系统等部分组成。载液一般由注射泵注入,样品由微量注射泵脉动注入。分离系统由分离流道与分离场施加装置构成。检测分析系统可由电子显微镜或光散射仪或化学分析仪与计算机共同组成。图1为典型的FFF流道几何形状。流道一般由在高分子材料薄片上刻出的矩形流道与上下平板组合而成。其结构如图2所示。
图1典型FFF流道几何形状
图2 FFF分离流道基本结构
3场流分离原理
场流分离(Field flow fractionation—FFF)作为一种新的分离技术,最早是由Giddings博士在1966年提出的[1]。FFF作为一类分离技术,可分离、提纯和收集流体中的悬浮物微粒。FFF适用于样品组分尺寸从1nm-100μm大分子、胶质和微粒物料的分离[2-3],也可完成对组分多种物理特性参数的测定。如:质量、密度、电荷、热扩散系数等。
在FFF系统中,由于矩形微流道的宽高比大于100:1,因此流速剖面近似为二维层流。分离场垂直于流动方向施加。样品组分除了随载流的纵向流动外在分离场的作用下,还存在垂直于流道的漂移运动。被分离(分析)的样品脉动地注入分离流道中流动的载流液中,由于保持力的不同,样品的组分在不同的时间内出现在流道的出口。
在FFF中,分离是由作用于样品的外加场力与样品的扩散力相互作用完成的。作用于样品的外加场力驱动样品组分向流道的一壁面(积聚面)漂移,而样品的扩散力则起相反作用。当场力与扩散力达到平衡时,微粒将处于距积聚面距离一定的位置上。载流液速度剖面呈抛物线形状或近似抛物线形状,其流速剖面如图3所示。其最大速度在流道中心附近,最小速度在流道壁处。由于被分离样品中各组分受分离场影响的不同,样品中不同的组分将处于距积聚面不同的位置,即不同的组分处于不同的流速层面。因此,那些受分离场影响较强的组分距积聚面较近,流速较小,而那些与分离场作用弱的组分距积聚面较远,流速较大。由于不同组分流速的差异,它们通过流道所需时间(保持时间)也就不同,图4展现了这一原理。保持时间与组分的特性有关,利用这些特性实现样品中不同组分的分离。同样也可利用测定保持时间来确定与其相关的特性。
图3 流速剖面
图4场流分离原理场流分离种类
场流分离作为一类分离技术,虽然依据的基本原理相同,但根据所加外场类型的不同,场流分离技术主要分为流场流分离,热场流分离,沉降场流分离,电场流分离等。另外流场流分离技术又可分为对称流场流分离和非对称流场流分离。
4.1电场流分离
电场流分离技术作为微粒子分离技术最早出现于1972年,并用于多种蛋白质的分离[4]。电场流分离(electricalfield flow fractionation—EFFF)不是直接的流动分离技术,而是依赖于垂直分离方向上(流动方向)的电场在低黏性的载液中完成分离的。在电场流分离系统中,被分离的组分由于其电敏感性的不同,所受的电场作用力就不同。当微粒所受的电场作用力与扩散力达到平衡时,不同的微粒将处于距积聚壁不同的距离,即在流道中有不同的速度,从而使得不同的微粒在不同的时间出现在分离流道的出口,从而完成分离。在EFFF系统中,电场E垂直于流道施加,粒子的漂移速度取决于它们的电泳淌度μ。理论上凡具有电敏感性的微粒都可利用电场流分离技术分离。
在电场流分离过程中存在着双电层效应,由于双电层效应的影响,系统有效电场强度损失巨大。据测,有效电场强度一般不超过外加电场强度的3%[5],多数情况为1%左右。EFFF系统的应用包括:细胞分离、乳状液和脂质体的鉴别以及样品的预处理。
电场流分离最初用于蛋白质的分析、分离[6]。随后发展为多种微粒的分析分离,如:人类红细胞、胶体、糖、黏土等[7]。4.2 热场流分离
在热场流分离(Th-FFF)中,应用的“场”是温度梯度。温度梯度是依靠上下壁面的温差建立的。这一温度梯度横穿液流,液流在温度不同的两平行板间流动,热扩散使样品组分向积聚面漂移。Th-FFF侧重于在亲脂性聚合体上的应用。Th-FFF可用于粒径小到1μm以下,大到20μm微粒的提取,分离[8]。目前已成为测量稀释聚合物溶液热扩散系数极其方便的工具。它测量速度快,通常只需10~20 min。
4.3 沉降场流分离
沉降场分离外加场可以是重力即重力场流分离(GFFF),也可以是离心力即离心力场流分离或称沉降场分离(SdFFF)。GFFF是一种最简单的FFF技术,利用地球重力场作为外加力场,与其他FFF相比,GFFF在理论方面还需完善。GFFF已成功应于红细胞,胶体,淀粉,葡萄酒酵母的分析鉴定[9]。SdFFF应用与GFFF相似。如:硅凝胶体粒子;聚合体橡胶和细胞的分离纯化[10]。与GFFF相比, SdFFF结构相对复杂,外力场变化范围较大且易控制。4.4 流场流分离
流场流分离(flow-FFF)最早由J.C.Giddings等人于1984年提出。Flow-FFF的外加力场为垂直于流道(流动)方向的横向流。Flow-FFF装置与其他场流装置略有不同,其流道上下壁具有渗透能力。在flow-FFF中,分析物被横流推向半渗透性壁,并被只允许载流通过的膜隔离在积聚墙处。这样流道壁保证了在分离过程中外加横向流的实施。通过外加横向流的作用使不同的微粒处于流道中的不同流速层面上,从而实现不同的微粒在不同的时间出现在流道的出口处完成分离。
现有的flow-FFF设备可完成多种微粒的离。其适用的微粒尺寸范围从1 nm~0.1 mm。此外,近些年流场流分离已应用于微粒尺寸测定,蛋白质特性分析等方面。
5不同场流分离的差异
不同的场流分离技术原理基本相同,其区别主要在于应用外场的不同,其适用的领域及范围也存在差异。
沉降场流分离具有设备简单,控制方便的优点,其分离是基于被分离的微粒的不同尺寸、密度、及形状实现分离的,因此它主要用于红细胞、胶体、淀粉等的分离,但它难以完成高浓度、尺寸较小微粒的分离,如尺寸在0.02-0.05μm 的胶体。
流场流分离相对于沉降场流分离来说,其所适用微粒尺寸范围要广泛,尺寸从1nm-0.1mm,但与沉降场流分离相比,它对微粒的选择分离效果稍差。
热场流分离不但可用于微粒的分离,同时也可用于微粒热扩散系数的测定,进而完成对微粒成分的分析。
电场流分离几乎具有其他场流分离所有的优势,同时它还可完成在其他场流分离中无法完成的微粒分离,如脂质体的分离等。但电场流分离要求被分离微粒具有电泳淌度,如被分离微粒不具有电泳淌度,则需对被分离的微粒进行预处理。6 场流分离国内外发展方向
场流分离目前主要发展方向是与微细加工技术相结合,使其小型化,微型化。场流分离系统微型化后可能获得的益处包括:提高分辨率,减少分离时间,减少仪器尺寸,降低能耗。同时还可减少时间常数、溶剂消耗、松弛和平衡时间。国外已对电场流微型化从理论及实验上做了一些工作。实温度场流分离的微型化研究也获得进展。但目前场流微型化仍处于理论研究与探索阶段,有许多理论及结构上的问题还有待解决。对场流分离流道的优化设计近期国外也做了一些探索。
场流分离在国外已研究了数十年,但目前国内研究还处于起步阶段。有关场流分离深层次的机理及场流分离的应用仍有广阔的研究空间。尤其对如何实现连续场流分离及如何实现场流分离在工业生产上的应用,还有大量的工作等待我们去做。
参 考 文 献
[1].B K Gale;K D Caldwell;A B Frazier.A micromachined electrical field-flow fractionation system[J].Transactions on biomedical engineering,1988,45(12): 1459-1470.[2] Bruce K Gale;Karin D Caldwell;A Bruno Frazier.Geometric scaling effects in electrical field flowfractionation.2.Experimental results[J].Analytical chemistry,2001,73(10):2345-2353.[3]C Lautrette;P J P Cardot;C Vermoot-Desroches.Sedimentation field flow fractionation purificationof immaturea neural cell from a human tumor neuroblastoma cell line[J].Journal of chromatography-B,2003,791(1):149-160.[4] S Kim Ratanathanawongs;Paul M Shiundu;J Calvin Giddings.Size and compositional studies of core-shell latexes using flow and thermal field-flow fractionation[J].Colloids and surfaces,1995,105(2-3):243-250.[5] Hovingh M E;Thompson G h;Giddings J C.Column parameters in TFFF[J].Minerals engineering,1995,8(11):1359-1368.[6] Caldwell KD.Field-flow fractionation[J].Trends in biotechnology,2005,23(9):475.[7] Josef Jana;Jan Dupák.Elimination of edge effects in micro-thermal field-flow fractionationchannel of low aspect ratio by splitting the carrier liquid flow into the main central stream andthe thin stream layers at the side channel walls[J].Journal of chromatography,2005,1068(2):261-268.[8] Stevenson S G;Ueno T;Preston K R.Automated frit inlet/frit outlet flow field-flow fractionation for protein characterization with emphasis on polymeric wheat proteins[J].Analytical chemistry,1999,71(1):8-15.[9] Picton L;Bataille I;Muller G.Analysis of a complex polysaccharide(gum arabic)by multi-angle[J].Carbonhydrate polymers laser light scattering coupled on-line to size exclusion chromatography and flow field-flow fractionation [10] L Koch ,T Koch,H M Widmer.Sedimentation field-flow fractionation for pigment quality aement [J].Chromatogr,1900,517:395-403.
在螺旋微通道中,惯性微流体的连续颗粒分离问题在这项工作中,我们报道了一项简单的惯性微流体装置,它利用迪安夫妇的螺旋微通道中的惯性迁移原则,实现连续多粒子分离.由于曲线微......
副油箱从机翼分离流场的数值模拟((共7篇))由网友“笂木枝枝子”投稿提供,下面是小编为大家整理后的副油箱从机翼分离流场的数值模拟,欢迎阅读与收藏。篇1:副油箱从机翼分离流场的......
联合循环余热炉炉内气流分布状况的研究已经下载Air Flow Distribution Inside Combined Circulating Residual Heat Boiler >2001年03期崔成云 , 左国华 , 康达 , 胡家震哈......
1.生物分离技术:指从动物与微生物的有机体或器官`生物工程产物(发酵液`培养液)及生物化学产品中提取`分离`纯化目标物质的技术过程.2.生物分离的一般工艺[理想化过程]:⑴动......
食品分离技术的现状及研究进展1 分离操作在食品工业中的作用随着食品工业的发展,化工单元操作不断向食品工业渗透并在食品加工领域内实践和提高,形成了适应食品加工特殊要求的......
