汽车曲柄连杆机构设计[优秀]_汽车曲柄连杆机构设计

2020-02-27 其他范文 下载本文

汽车曲柄连杆机构设计[优秀]由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“汽车曲柄连杆机构设计”。

黑龙江工程学院本科生毕业设计

摘要

本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。

首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。

关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

I

黑龙江工程学院本科生毕业设计

ABSTRACT

This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism.First, motion laws and stre in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained.Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination.Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software aembling function aembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module(Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment.The analysis of simulation results shows that those simulation results are meet to true working state of engine.It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine.Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

II

黑龙江工程学院本科生毕业设计

目录

摘要 ······································································································· I Abstract ································································································· II 第1章 绪论 ································································ 错误!未定义书签。

1.1 选题的目的和意义 ··············································· 错误!未定义书签。1.2 国内外的研究现状 ··············································· 错误!未定义书签。1.3 设计研究的主要内容 ············································ 错误!未定义书签。

第2章 曲柄连杆机构受力分析 ···································· 错误!未定义书签。

2.1 曲柄连杆机构的类型及方案选择 ····························· 错误!未定义书签。2.2 曲柄连杆机构运动学 ············································ 错误!未定义书签。

2.1.1 活塞位移 ·················································· 错误!未定义书签。2.1.2 活塞的速度 ··············································· 错误!未定义书签。2.1.3 活塞的加速度 ············································ 错误!未定义书签。2.2 曲柄连杆机构中的作用力 ······································ 错误!未定义书签。

2.2.1 气缸内工质的作用力 ··································· 错误!未定义书签。2.2.2 机构的惯性力 ············································ 错误!未定义书签。2.3 本章小结 ··························································· 错误!未定义书签。

第3章 活塞组的设计 ·················································· 错误!未定义书签。

3.1 活塞的设计 ························································ 错误!未定义书签。

3.1.1 活塞的工作条件和设计要求 ·························· 错误!未定义书签。3.1.2 活塞的材料 ··············································· 错误!未定义书签。3.1.3 活塞头部的设计 ········································· 错误!未定义书签。3.1.4 活塞裙部的设计 ········································· 错误!未定义书签。3.2 活塞销的设计 ····················································· 错误!未定义书签。

3.2.1 活塞销的结构、材料 ··································· 错误!未定义书签。3.2.2 活塞销强度和刚度计算 ································ 错误!未定义书签。3.3 活塞销座 ··························································· 错误!未定义书签。

3.3.1 活塞销座结构设计 ······································ 错误!未定义书签。

黑龙江工程学院本科生毕业设计

3.3.2 验算比压力 ··············································· 错误!未定义书签。3.4 活塞环设计及计算 ··············································· 错误!未定义书签。

3.4.1 活塞环形状及主要尺寸设计 ·························· 错误!未定义书签。3.4.2 活塞环强度校核 ········································· 错误!未定义书签。3.5 本章小结 ··························································· 错误!未定义书签。

第4章 连杆组的设计 ·················································· 错误!未定义书签。

4.1 连杆的设计 ························································ 错误!未定义书签。

4.1.1 连杆的工作情况、设计要求和材料选用 ··········· 错误!未定义书签。4.1.2 连杆长度的确定 ········································· 错误!未定义书签。4.1.3 连杆小头的结构设计与强度、刚度计算 ··········· 错误!未定义书签。4.1.4 连杆杆身的结构设计与强度计算 ···················· 错误!未定义书签。4.1.5 连杆大头的结构设计与强度、刚度计算 ··········· 错误!未定义书签。4.2 连杆螺栓的设计 ·················································· 错误!未定义书签。

4.2.1 连杆螺栓的工作负荷与预紧力 ······················· 错误!未定义书签。4.2.2 连杆螺栓的屈服强度校核和疲劳计算 ·············· 错误!未定义书签。4.3 本章小结 ··························································· 错误!未定义书签。

第5章 曲轴的设计 ····················································· 错误!未定义书签。

5.1 曲轴的结构型式和材料的选择 ································ 错误!未定义书签。

5.1.1 曲轴的工作条件和设计要求 ·························· 错误!未定义书签。5.1.2 曲轴的结构型式 ········································· 错误!未定义书签。5.1.3 曲轴的材料 ··············································· 错误!未定义书签。5.2 曲轴的主要尺寸的确定和结构细节设计 ···················· 错误!未定义书签。

5.2.1 曲柄销的直径和长度 ··································· 错误!未定义书签。5.2.2 主轴颈的直径和长度 ··································· 错误!未定义书签。5.2.3 曲柄 ························································ 错误!未定义书签。5.2.4 平衡重 ····················································· 错误!未定义书签。5.2.5 油孔的位置和尺寸 ······································ 错误!未定义书签。5.2.6 曲轴两端的结构 ········································· 错误!未定义书签。5.2.7 曲轴的止推 ··············································· 错误!未定义书签。5.3 曲轴的疲劳强度校核 ············································ 错误!未定义书签。

5.3.1 作用于单元曲拐上的力和力矩 ······················· 错误!未定义书签。

黑龙江工程学院本科生毕业设计

5.3.2 名义应力的计算 ········································· 错误!未定义书签。5.4 本章小结 ··························································· 错误!未定义书签。

第6章 曲柄连杆机构的创建 ······································· 错误!未定义书签。

6.1 对Pro/E软件基本功能的介绍 ································· 错误!未定义书签。6.2 活塞的创建 ························································ 错误!未定义书签。

6.2.1 活塞的特点分析 ········································· 错误!未定义书签。6.2.2 活塞的建模思路 ········································· 错误!未定义书签。6.2.3 活塞的建模步骤 ········································· 错误!未定义书签。6.3 连杆的创建 ························································ 错误!未定义书签。

6.3.1 连杆的特点分析 ········································· 错误!未定义书签。6.3.2 连杆的建模思路 ········································· 错误!未定义书签。6.3.3 连杆体的建模步骤 ······································ 错误!未定义书签。6.3.4 连杆盖的建模 ············································ 错误!未定义书签。6.4 曲轴的创建 ························································ 错误!未定义书签。

6.4.1 曲轴的特点分析 ········································· 错误!未定义书签。6.4.2 曲轴的建模思路 ········································· 错误!未定义书签。6.4.3 曲轴的建模步骤 ········································· 错误!未定义书签。6.5 曲柄连杆机构其它零件的创建 ································ 错误!未定义书签。

6.5.1 活塞销的创建 ············································ 错误!未定义书签。6.5.2 活塞销卡环的创建 ······································ 错误!未定义书签。6.5.3 连杆小头衬套的创建 ··································· 错误!未定义书签。6.5.4 大头轴瓦的创建 ········································· 错误!未定义书签。6.5.5 连杆螺栓的创建 ········································· 错误!未定义书签。6.6 本章小结 ··························································· 错误!未定义书签。

第7章 曲柄连杆机构运动分析 ···································· 错误!未定义书签。

7.1 活塞及连杆的装配 ··············································· 错误!未定义书签。

7.1.1 组件装配的分析与思路 ································ 错误!未定义书签。7.1.2 活塞组件装配步骤 ······································ 错误!未定义书签。7.1.3 连杆组件的装配步骤 ··································· 错误!未定义书签。7.2 定义曲轴连杆的连接 ············································ 错误!未定义书签。7.3 定义伺服电动机 ·················································· 错误!未定义书签。

黑龙江工程学院本科生毕业设计

7.4 建立运动分析 ····················································· 错误!未定义书签。7.5 进行干涉检验与视频制作 ······································ 错误!未定义书签。7.6 获取分析结果 ····················································· 错误!未定义书签。7.7 对结果的分析 ····················································· 错误!未定义书签。7.8 本章小结 ··························································· 错误!未定义书签。

结论 ············································································ 错误!未定义书签。参考文献 ····································································· 错误!未定义书签。致谢 ············································································ 错误!未定义书签。附录 ············································································ 错误!未定义书签。

黑龙江工程学院本科生毕业设计

黑龙江工程学院本科生毕业设计

需毕业论文正文全文及全套图纸可联系: QQ或微信:631768401 TEL:***

曲柄连杆机构

曲柄连杆机构一、填空题1.活塞连杆组由( )、( )、( )、( )等组成。 2.活塞环包括( )、( )两种。 3.在安装气环时,各个气环的切口应该( )。4.油环分为( )和组合油环两种,组合油环一般由( )和( )组成。 5......

曲柄连杆机构

曲柄连杆机构一、填空题1.活塞连杆组由(活塞)、(活塞环)、(活塞销)、(连杆)等组成。 2.活塞环包括(气环)、(油环)两种。3.在安装气环时,各个气环的切口应该(错开)。4.油环分为(普通油环)和组合油......

第二章曲柄连杆机构

第二章 曲柄连杆机构学习目标:通过本章的学习,你应该能够解答如下几个问题:1、曲柄连杆机构有哪些零件组成?其功用是什么?2、汽油机的燃烧室有那几种?有何特点?3、试述气缸体的三种......

曲柄连杆机构习题

曲柄连杆机构一、填空题1.曲柄连杆机构的工作条件是、、和 。2.机体的作用是 ,安装 并承受 。3.气缸体的结构形式有、、三种。CA6102汽油机和YC6105QC柴油机均采用 。4.EQ109......

曲柄连杆机构复习题

曲柄连杆机构复习题一、填空题1、曲柄连杆机构是由机体组、活塞连杆组和()三部分组成的。2、曲柄连杆机构是在()、()、()以及有化学腐蚀的条件下工作的。3、活塞销座孔轴线偏置的方......

《汽车曲柄连杆机构设计[优秀].docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
汽车曲柄连杆机构设计[优秀]
点击下载文档
相关专题 汽车曲柄连杆机构设计 设计 曲柄 连杆 汽车曲柄连杆机构设计 设计 曲柄 连杆
[其他范文]相关推荐
[其他范文]热门文章
下载全文