倒立摆在matlab的simulink库下的仿真_倒立摆simulink仿真

2020-02-27 其他范文 下载本文

倒立摆在matlab的simulink库下的仿真由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“倒立摆simulink仿真”。

倒立摆在matlab的simulink库下的仿真

倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。对于倒立摆系统的控制研究长期以来被认为是控制理论及其应用领域里引起人们极大兴趣的问题,倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统。研究倒立摆控制能有效地反映控制中的许多问题,倒立摆研究具有重要的理论价值和应用价值,理论上,它是检验各种新的控制理论和方法的有效实验装置。应用上,倒立摆广泛应用于控制理论研究!航空航天控制,机器人、杂技顶杆表演等领域,在自动化领域中具有重要的价值。另外,由于此装置成本低廉,结构简单,便于用模拟、数字等不同方式控制,在控制理论教学和科研中也有很多应用。

本论文中,以一级倒立摆为研究对象,对它的起摆以及稳定控制做了研究,主要研究工作如下: 1.首先介绍了倒立摆系统的组成和控制原理,建立了一级倒立摆的数学模型,对倒立摆系统进行定性分析,但在平衡点是能控的、能观的。

2.分析了倒立摆的起摆过程,对倒立摆的起摆能量反馈控制进行分析与说明。3.在matlab2014a的simulink库下对倒立摆构造单级倒立摆状态反馈控制系统的仿真模型和构造具有状态观测器的单级倒立摆状态反馈控制系统的仿真模型。

4.对这次仿真的总结。

一、倒立摆的控制目标

倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。

二、建立单级倒立摆系统的状态空间模型

其中,质量为M的小车在水平方向滑动,质量为m的球连在长度为L的刚性摆一端,x表示小车的位移,u是作用在小车上的力,通过移动小车使带有小球的摆杆始终处于垂直的位置。为了简单起见,假设小车和摆仅在一个平面内运动,且不考虑摩擦、摆杆的质量和空气阻力。如图1

图1 设系统的动态特性可以用小车的位移和速度及杆偏离垂线的角度θ和角速度来描述。设小车位移为x,则小球中心位置是xlsin 在水平方向,应用牛顿第二定律: d2xd2Mm2(xlsin)u2dtdt

在垂直于摆杆方向,应用牛顿第二定律:

d2m2(xlsin)mgsindt

求微分方程得:

d(sin)(cos)dt

d22cos(sin)(sin)dt2 d(cos)(sin)dt

d22(sin)(cos)(cos)dt2

化简得

uml(Mm)ymgmlmy

线性化:当和较小时,有sincos1和

较小时,有

0 化简得 mg1yuMM(Mm)g1uMlMl

选择状态变量

小车的位移、小车的速度、小车的角度、小车的角速度分别为

x1yx2yx3x4u为输入,y为系统的输出..10xx20x3040x状态图为

10000mgM0(Mm)gMl0x11x102Mu;1x3010x4Mlx1xy10002x3x4

三、单级倒立摆系统的极点配置

1.状态反馈系统的极点配置及其MATLAB/Simulink仿真

取适当的参数 M m l u y θ 小车质量

小球质量

摆杆的长度

0.1 Kg 0.01Kg

1m 加在小车上的力 小车位移

摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下 g

重力加速度为

10g/s

将参数代入后得到新的矩阵

10xx20x3040x 100x10x10102u001x300110x41x1xy10002x3x4

接下来使用matlab和线性系统的能控性判据,通过是否为满秩来判断能控性

根据判别系统能控性的定理,该系统的能控性矩阵满秩,所以该系统是能控的。因为系统是能控的,所以,可以通过状态反馈来任意配置极点。不失一般性,不妨将极点配置在s16;s26.5;s37;s47.5

在matlab下输入命令

得到状态反馈矩阵为

K204.75122.175488.5149.175

采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型,如下图所示。

首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值(这里我们设置为[0 0 0.1 0]。然后运行仿真程序。

得到的仿真曲线

从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。

2.设计状态观测器实现状态反馈极点配置及其仿真

首先,使用MATLAB,判断系统的能观性矩阵是否为满秩。输入以下程序

因为该系统的能观测性矩阵满秩,所以该系统是能观测的。因为系统是能观测的,所以,可以设计状态观测器。而系统又是能控的,因此可以通过状态观测器实现状态反馈。

设计状态观测器矩阵,使的特征值的实部均为负,且其绝对值要大于状态反馈所配置极点的绝对值。通过仿真发现,这样才能保证状态观测器有足够快的收敛速度,才能够保证使用状态观测器所观测到的状态与原系统的状态充分接近。不妨取状态观测器的特征值为:

s120s221s322s423输入以下的命令

得到状态观测器矩阵G 如果采用MATLAB/Simulink构造具有状态观测器的单级倒立摆状态反馈控制系统的仿真模型,如下图所示。

首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值这里设置初值为[0 0 0.1 0]。然后运行仿真程序。得到的仿真曲线。

从仿真结果可以看出,可以将倒立摆的杆子与竖直方向的偏角控制在=0(即小球和杆子被控制保持在竖直倒立状态),另外说明下黄线代表位移,紫线代表角度。

3.总结

由仿真结果对比可知,加不加观测器都可以很好的控制摆杆不倒,完全可以达到控制要求。但是加观测器的系统控制效果要优于没有加观测器的系统。

参考文献

[1]郑大钟.线性系统理论(第2版):清华大学出版社(2002-2012)[2]欧阳黎明.MATLAB 控制系统设计[M].北京:国防工业出版社,2001.[3]线性系统理论和设计,仝茂达 编著,出版社:中国科学技术大学出版社,1998 [4]线性系统理论,段广仁编著,哈尔滨工业大学出版社 1996 [5]曾水平的PPT.

基于MATLABSimulink的电力系统仿真实验

基于MATLAB/Simulink的电力系统故障分析 10kv系统三相短路分析三相短路(以中性点不接地系统模型为类)模块搭建:三相短路各元件参数设置如下:三相短路仿真波形如下:如图1——a、......

一级倒立摆的Simulink仿真

单级倒立摆稳定控制直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。杆长为2mgu图1 直线一级倒立摆系统图2 控制系统结构假......

运用MatlabSimulink对主动悬架动力学仿真与分析

运用Matlab/Simulink对主动悬架动力学仿真与分析摘要:基于主动悬架车辆1/4动力学模型,采用LQG最优调节器理论确定了主动悬架的最优控制方法,利用matlab软件建立了主动悬架汽车......

基于一阶倒立摆的matlab仿真实验

成都理工大学工程技术学院 基于一阶倒立摆的matlab仿真实验实验人员: -------------- 学号:-----------------实验日期:20150618 摘要本文主要研究的是一级倒立摆的控制问题,......

崖下库导游词

崖下库景区游客朋友,大家好!楠溪江景区是以我们永嘉的母亲河――楠溪江命名的,楠溪江从源头到汇入瓯江全长约145公里。楠溪江主要是由大水系楠溪与小楠溪构成,。今天我们去的景......

《倒立摆在matlab的simulink库下的仿真.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
倒立摆在matlab的simulink库下的仿真
点击下载文档
相关专题 倒立摆simulink仿真 matlab Simulink 倒立摆simulink仿真 matlab Simulink
[其他范文]相关推荐
[其他范文]热门文章
下载全文