变压器不平衡率_变压器总支不平衡率
变压器不平衡率由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“变压器总支不平衡率”。
三相负荷不平衡对低压供电系统的影响
吴建宾 周文波 浙江电力公司衢州电力局(324000)
随着国民经济的发展,人们生活水平的日益提高,大量大功率的单相家用电器如:空调器、热水器、微波炉、电磁炉等进入百姓人家,这些家用电器给人们带来舒适、方便、快捷生活的同时,也给供电部门低压供电系统的安全、经济运行带来一定影响,造成这种影响的原因是由于低压供电系统的三相负荷不平衡。三相负荷不平衡程度由三相负荷电流不平衡度Kbp表示,一般要求变压器出线电流不平衡度小于10%;低压供电网络始端的负荷电流不平衡度小于20%。而在实际的负荷实测中常常发现三相负荷电流不平衡度大于20%,有的甚至高达50%以上。三相负荷不平衡对低压供电系统的安全、经济运行的影响主要有以下几方面:对电能质量的影响
电压合格率是衡量电能质量的主要指标,低压供电系统中三相负荷不平衡对电压合格率的影响较大。在接入大负荷的一相上会产生较高的电压降,从而使接在该相上的用户(特别是供电半径长的用户)电压质量不合格,有的甚至达到无法用电的严重程度。对线路损耗的影响
在低压供电系统中,如三相负荷不平衡会引起线损的增加。设一条线路低压的三相负荷电流为IA、IB、IC,中性线的电流为I0,若相线的电阻为R,中性线的电阻为相电阻的2倍2R,则该低压线路的损耗为:
ΔP1=[A2R+IB2R+IC2R+IO2×2R]10-3=(IA2+IB2+IC2+2IO2)R×10-3 当三相负荷电流平衡后,设每相电流为IA′、IB′、IC′ IA′=IB′=IC′=(IA+IB+IC)/3,中性线电流为零,这时该低压线路的损耗为: ΔP2=(IA′+IB′+IC′)2R×10-3/3=(IA2+IB2+IC2+2IAIB+2IBIC+2ICIA)R/3×10-3 降低损耗为:
ΔP=ΔP1-ΔP2=2(IA2+IB2+IC2-IAIB-IBIC-ICIA+3IO2)R×10-3 3 引起中性点偏移
低压供电系统中,如三相负荷不平衡,则会在中性线上产生一中性线电流,其大小可用实测法测得,也可用向量计算法算出。中性线电流使中性线上产生电压降,因而使中性点的电位发生偏移,偏移的程度随三相负荷不平衡度增加而增大,破坏供电平衡。由于中性点电位不为零,影响了该低压供电系统所有接中性线保护设备的用电安全。降低设备利用率
在低压供电系统中,三相负荷的不平衡还会降低设备的利用率,特别是配变的利用率。原因是要使设备满负荷运行,大负荷相就出现过载运行,这是不允许的,只有降低设备利用率运行。
针对上面分析的三相负荷不平衡对低压供电系统的影响,在实际工作中可采取以下措施消除或减少三相负荷不平衡带来的影响。
(1)加强基础资料管理,减少接火的随意性:
供电企业中低压网络基础资料管理是一项薄弱环节,造成新增用户接火的随意性,是引起三相负荷不平衡的源头。为此要趁两网改造之际,建立健全低压网络(特别是公变台区)的资料管理,同时在业扩流程中要对用户的情况作全面掌握,做到知己知彼,这样在新上用户接火时就有针对性,从源头上降低三相负荷不平衡出现的程度。(2)增大中性线的导线截面:
在实际运行的三相四线低压供电系统中,中性线的导线截面往往小于相线的导线截面,这样在三相负荷不平稳时不但增加了线路损耗,有的甚至出现中性线熔断引起用户电气设备烧毁的事故,因此建议在三相四线中,中性线的导线截面应选择与相线一致,以减少损耗,消除断线的事故隐患。
(3)对进户点处采用重复接地:
对由于三相负荷不平衡而引起中性点电位偏移,而使接中性线保护的电气设备达不到保护的目的,建议在进户线进户点处采用重复接地,以达到保护目的。
(4)做好负荷实测工作,以便及时发现处理出现的严重不平衡情况: 负荷实测是供电部门运行维护必不可少的工作,通过负荷实测不但可以了解网络的运行情况,而且能及时发现运行中出现的各种问题,包括三相负荷不平衡情况,以便采取措施予以解决。
配变三相电流平衡对电网的影响
发布时间:2011-7-20 阅读次数:416 次
当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问题。
配变长期偏负荷运行主要是三相电流没有调整平衡所致。三相电流不平衡,尤其在高温下运行,极易引发配变烧坏。另外,在低压供电系统中,配电变压器的三相负荷平衡状况与电能损耗有一定的关系。三相负荷基本平衡时,零线没有电流流过,这是电能损耗最小。当三相负荷严重不平衡时,零线有电流流过,这是电能损耗就会增大。我们平时测试三相负荷平衡,一般用钳形电流表在变压器二次出口测量,如果发现三相负荷值接近,就认为是平衡了,但是这可能是表面化的平衡,仍然可能存在较大的电能损耗。配电变压器的三相电流平衡,必须让每个节点电流平衡,才能保证低压电网在最佳的运行状态。
配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太大,但是也不能忽视。
因此,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。
农网改造前,农村低压线损率普遍较高,低的百分之十以上,一般的在百分之二十左右,高的达到百分之三十左右。各级领导和农电职工都把降低线损的希望寄托在农网改造上,希望一次性解决问题。农网改造后在一定程度上极大地改变了农村电网状况,显著降低了农村低压线损,好的下降到百分之八及以下,一般在百分之十左右。平均下降约百分之十一,但与上级要求的百分之六还有一定差距。农网改造完成后有的低压线损率却依然达不到标准,给农电企业的运营带来不小的压力,对巩固“两改一同价”成果造成潜在困难。为更好的服务于广大用户,科学合理的做好营销工作。在原有工作经验的基础上,我本着求真务实的原则,着重对降低低压居民台区损失三相负荷不平衡的危害和影响进行了探索,把降低低压台区线损的方法—平衡降损法作为课题进行论诉。
现状调查:①某村A台区变压器为400KVA、月电量在25000KWH、考核损失率为百分之十二。哈达村356台区变压器为315KVA、月电量在16000KWH、考核损失率为百分之十二点五。②某村B台区变压器为250KVA、月电量在15000KWH、考核损失率为百分之十点九。③某村C201台区变压器为200KVA、月电量为9000KWH、考核损失率为百分之十一点二。④某村D台区变压器为200KVA、月电量为11000KWH、考核损失率为百分之十三点五。⑤某村F台区变压器为250KVA、月电量为13000KWH、考核损失率为百分之十点六。从一条供电线路的普查的情况看有的个别台区损失率高于百分之十。低压台区的损失电量占线路损失电量的百分之三十。低压台区的损失率的波动,进而造成该线路整体的损失率波动。
通过以上数据的结果可以看出,加强对低压台区的损失管理,深挖降损节能的潜力,使低压损失率合理稳定。将对供电企业的线损管理工作将是非常有益的。不但可以为本企业节省供电成本,进一步提高企业的经济效益,同时也会产生间接的社会效益。
按照国家一流供电企业及营业管理工作标准。对低压台区的三相负荷进行理论计算如下:
调平三相负荷理论计算:
设总的负荷电流为I,每根导线的电阻为R,功率因数COSφ=1,采用单相二线供电时的功率损耗为:
ΔP1=2I2R(1)
把全部单相负荷平均接到两根相线上,采用二相三线制供电,则每相的电流为原来的1/2,其功率损耗为:
ΔP2=3(I/2)2R=3I2R/4(2)
采用三相四线制供电线路,把负荷平均分配到三相上,则每相的电流为原来的1/3,其功率损耗为:
ΔP3=3(I/3)2R=I2R/3(3)
(l)、(2)两式相除,得ΔP1/ΔP2=2.67(倍)
(l)、(3)两式相除,得ΔP1/ΔP3=6(倍)
可见若不平衡,线损增加数倍。跟据目前城乡居民用电需求不断增长,单相负荷已成为电力负荷的主要方面,供电企业的低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相上,且有存在单相两线。经计算单相负荷的线损可能增加2至4倍,由此可知调整三相负荷的降损潜力。
按照计划2005年底完成某供电企业10个损失相对较高台区进行推广试验。调平三相负荷,使损失率降到百分之八以下。
目标值的可行性分析和前期工作:
1、供电企业领导重视,把此项作为节能降损重点工作。
2、组织工作人员对各台区进行普查。
3、组织抄表员对台区进行周期抄表。
4、专项目投入0.5万元。
5、对台区内商服用电进行普查。
6、抄表员与线路维护员配合进行周期电压测试。
7、收集数据进行分析总结。
8、对三相不平衡的台区进行负荷调整。
要因确认经以上数据和现场测试的结果认为台区调平三相负荷的要因如下:
1、电度表的计量误差率必须合格。
2、台区商服用电占台区总电量比重较大,且为两相供电。
3、因台区商服用电负荷比重较大,造成用电高峰时段用电负荷情况不均衡。
4、部分用户的用电容量超负荷情况时有发生。
5、个别台区供电半径较长。
自供电企业的农网改造工程的结束后,对供电变压器三相不平衡问题进行了深入的探索,发现电压三相不平衡给线路损失率带来潜在的危害,三相不平衡是指三相电源各相的电压不对称。由各相电源所加的负荷不均衡所致,属于基波负荷配置问题。发生三相不平衡即与用户负荷特性有关,同时与电力系统的规划、负荷分配也有关。在电力系统正常运行方式下,该标准规定:电力系统公共连接点正常运行方式下不平衡度允许值为百分之二,短时间不得超过百分之四。对变压器的危害,在生产、生活用电中,三相负载不平衡时,使变压器处于不对称运行状态。造成变压器的损耗增大(包括空载损耗和负载损耗)。根据变压器运行规程规定,在运行中的变压器中性线电流不得超过变压器低压侧额定电流的百分之二十五。此外,三相负载不平衡运行会造成变压器零序电流过大,局部金属件升温增高,甚至会导致变压器烧毁。对线损的影响,三相四线结线方式,当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小;当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。当三相负荷不平衡时,无论何种负荷分配情况,电流不平衡度越大,线损增量也越大。我处在王岗镇四个低压台区,搞过几个降损试点,典型的如某台区:配变200kVA,供电半径长三百五十米,一百八十一户,月用电量11000kWh,全为居民用户。低压线损一直百分之十三左右,测量见三相负荷严重不平衡,达百分之三十二至百分之四十六!在组织专职电工用时一周时间,精细调整单相负荷,调整后三相不平衡度降低约为一半。按运行十天计算,线损率降为百分之五点四,降低近七个百分点,效果很好。
经济效益:
有形效益通过以上的理论计算和实际操作采用此方法,线损就可下降2至3个百分点。某供电企业按全年供电量为3亿千瓦时,低压台区供电量占百分之十五。也就是4500万千瓦时,线损率平均下降2个百分点。全年就节电90万千瓦时,共节省供电成本15万元。低压台区线损率平均下降2个百分点。将节省供电成本50万元。由此可知调整三相负荷平衡具有很大的降损潜力。
无形效益(社会效益)提高了为低压线路供电水平,巩固了农网改造工程成果。低压线损管理上到一个新的阶段。
农网改造后针对低压有的台区线损较高的原因,就技术方面来说,主要是没有进一步完善三相负荷平衡。因此要坚持对各台区的电流测试和对三相平衡措施不断进行完善。为更好的服务于广大用电户,提高供电质量。降损节能只有“逗号”而永远没有“句号”,在完善三相负荷平衡技术上还存在缺陷。所以需要我们不断的进行探索、查找不足,通过学习堵塞漏洞并加以改进。总之实行本方法,可使我们供电企业在线损管理上得到进一步的提高,彻实降低线路损耗,真正做到“多供少损”从而在整体上提高供电企业的经济效益。
低压配电网三相负荷分配不平衡的分析与解决措施
发布: 2011-8-16 | 作者: —— | 来源:lilaohushi| 查看: 491次 | 用户关注:
摘要:目前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,本文对此进行了原因分析并提出一些切实可行的解决措施。关键词:配电网、负荷、不平衡、分析、解决 当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在摘要:目前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,本文对此进行了原因分析并提出一些切实可行的解决措施。
关键词:配电网、负荷、不平衡、分析、解决
当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问题,笔者从电能质量和电网损耗两个方面来分析三相负荷不平衡所带来的影响,同时就此提出一些切实可行的解决措施.三相负荷不平衡产生对电能质量的影响分析
目前在10千伏配变的绕组接线都采用Dyn0或者采用Yyn0的接线方式,配变一次绕组无中性线、二次绕组中性线接地,并接有零线。在二次低压供电方式中一般采取3相4线制供电。配变低压侧3相负荷不平衡直接体现在3相负荷电流的不对称,从电机学的原理来分析3相不对称电流可以分解为对称的正序、负序、零序电流,也可以简单的看成是对称的3相负荷加上单相负荷负荷的叠加。由于配电变压器的一次绕组没有中性线,所以在二次绕组侧产生的零序电流无法在一次绕组中平衡,零序电流在零序电阻上产生电压降直接导致了在配变二次侧产生了中性点位置偏移。
同样根据简单的电路原理也可以分析出,由于在A、B、C相的负荷不等,所以在A、B、C三相上的电流也就不等,那么A、B、C三相电流矢量和一般不等于0,也就是在中性线上的电流一般不等于0,也即零线电流一般不等于0,在实际情况下,零线的电阻是不等于0的, 这样在零线上就存在电压,形成了中性点位移,导致了A、B、C相的相电压不对称,当某一相上接的负荷越大,这一相上的电压也就越低,而另外两相的电压将变高,所以当三相负荷的差值越大,也就是三相负荷的电流不平衡度越大,那么中性点的位移也就越大,所以导致电压的偏差也就越大。在城区配网中大多数低压负荷为照明和家用电器,这些都是单相负荷,同时用户的单相负荷的启用时间又不同时,所以三相电流的不平衡将会很明显,导致了某些用户的电压偏低,有些用户的电压偏高,特别是在夏天用电高峰期间,我们发现在有些配变的某一相上接了多台空调,在同时启动是就会产生单相电流严重超过其他两相,导致该相上的电压偏低,使有些用户的电器无法启动。这就是3相负荷不平衡导致3相电流、电压出现不对称的产生的原因。三相负荷不平衡对线损的影响分析:
2.1 三相负荷不平衡造成低压线路电能损耗增大。
低压配电线路有三相四线制、三相三线制、单相二线制等供电形式,线路交错繁杂,各相电流不平衡,沿线负荷分布没有一定规律,并且缺乏完整的线路参数和负荷资料,所以要准确地计算线路损耗是比较困难的,目前利用电流或者电压的不平衡度结合电流电压的向量计算在实际情况下比较复杂同时在实际应用中也不太切实可行,笔者在本文中利用一种简单近似的方法推导出因为的对低压配网的损耗影响,以目前低压配网常见的三相四线制的接线方式分析,设定3相负荷平衡下3相负荷为3P负载=PA+PB+PC=3P(PA=PB=PC=P),此时的线路损耗为设定P损耗=IA2R+IB2R+IC2R=3IA2RA=3P2/U2(IA=IB=IC=I,RA=RB=RC=R),假设三相负荷出现最严重偏相的情况下,即出现二相缺相运行,假设所有负荷接在C相的情况上运行,同时认为每个电气节点的电压相等,P损耗,=IC,2 *R=(3P/U)2 *R=9P2/U2 *R=9P 可以推出当出现负荷最严重偏相时,低压线路的损耗增加了6倍。
目前由于低压电网的3相负荷分布不均的现象比较普遍,负荷分配的实时变化很大,所以如果引入实际情况下的电流、电压的矢量值计算非常烦琐,而且意义不大,笔者在这里引入一种平均不平衡度的计算,在正常的误差范围内,可以说明负荷分配的不平衡对电网低压线路的损耗变化的影响,设定三相负荷为PA、PB、PC,三相的平均负荷为Pav为(PA+PB+PC)/3,假定各相功率因数相同, 每个电气节点的电压相等,三相的负荷的平均不平衡度对应为△A、△B、△C,(△A=(PA-Pav)/ Pav的差值)相线的功率损耗为:
P损耗=IA2*R+IB2*R+IC2*R=[Pav(1+△A)/ U]2*R+[Pav(1+△B)/ U]2*R+[Pav(1+△A)/ U]2*R=(U/R)2*Pav2[(1+△A)2+(1+△B)2+(1+△A)2]=(Pav*U/R)2 *[(1+△A)2+(1+△B)2+(1+△C)2] 因为△A+△B+△C=0,所以P损耗=(Pav*U/R)2 *[3+△A2+△B2+△C2],对此我们可以通过负荷实际测量出A、B、C的实际负荷数值推出配变台区的相线低压损耗。
此外,在三相系统中每个相线对星形接法的中点电压间有120°的相位移动,故当每相的负荷相等时,在零线上的电流为零。当三相负荷不均衡时,零线电流等于3相不平衡电流的矢量和,在抵消基波电流后的不平衡电流流入零线,由于谐波的影响,零线电流可以达到相线电流的1.5倍。此零线电流在零线回路造成的损耗在低压线路损耗中也占有一定的比例。
2.2 三相负荷不平衡造成配变自身电能损耗增大。
配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太大,但是也不能忽视。
综上所述,,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。解决3相负荷不平衡的几点措施
3.1 重视低压配电网的规划工作,加强与地方政府规划等部门的工作沟通,避免配电网建设无序,尤其避免在低压配电网中出现头痛医头,脚痛医脚的局面,在配电网建设和改造当中对低压台区进行合理的分区分片供电,配变布点尽量接近负荷中心,避免扇型供电和迂回供电,配电网络的建设要遵循“小容量、多布点、短半径”的配变选址原则。
3.2 在对采用低压三相四线制供电的地区,要积极争取对有条件的配电台区采用3芯或者4芯电缆或者用低压集束导线供电至用户端,这样可以在低压线路施工中最大程度的避免三相负荷出现偏相的出现,同时要做好低压装表工作,单相电表在A、B、C三相的分布尽量均匀,避免出现单相电只挂接在一相或者两相上,在线路末端造成负荷偏相。
3.3 在低压配电网零线采用多点接地,降低零线电能损耗。目前由于三相负荷的分布不平衡,导致了零线出现电流,按照规程要求零线电流不得超过相线电流的25%,在实际运行当中,由于零线导线截面较细,电阻值较相同长度的相线大,零线电流过大在导线上也会造成一定比例的电能损耗,所以建议在低压配电网公用主零线采用多点接地,降低零线电能损耗,避免因为负荷不平衡出现的零线电流产生的电压严重危及人身安全,而且通过多点接地,减低了因为发热等原因造成的零线断股断线,使得用户使用的相电压升高,损坏家用电器。此外对于零线损耗问题,在目前一般低压电缆中,零线的截面为相线的1/2,电阻值大造成了在三相负荷不平衡时,零线损耗加大,为此可以考虑到适当增大零线的导线截面,例如采用五芯电缆,每相用一个芯线而零线则用两个芯线。
3.4 对单相负荷占较大比重的供电地区积极推广单相变供电。目前在城市居民小区内大部分的负载电器是采用单相电,由于线路负荷大多为动力、照明混载,而电气设备使用的同时率较低,这样使得低压三相负荷在实际运行中的不平衡的幅度更大。另外从目前农村的生活用电情况看,在很多欠发达和不发达地区的农村存在着人均用电量小,居住分散,供电线路长等问题,对这些地区可以考虑到对于用户较分散、用电负荷主要以照明为主、负荷不大的情况,采用采用单相变压器供电的方式,以达减少损耗和建设资金的目的。目前单相变压器损耗比同容量三相变压器减少15%~20%,有的厂家生产的单相变在低压侧可以引出380V和220V两种电压等级,同时在一些地区也已开展利用多台单相变向三相负荷供电的试点,为使用单相变供电提供了更加广阔的空间。
3.5 积极开展变压器负荷实际测量和调整工作。配变的负荷实测工作看似简单,但是在实际工作中有几点需要注意,一是实测工作不能简单地测量配变低压侧A、B、C三相引出线的相电流,而且要测量零线上的电流,或者是测量零线(排)对地电压,从而可以更好地比较出三相负荷的不平衡情况,二是实测工作要向低压配电线路的末端和分支端延伸,这样可以进一步发现不平衡负荷的出现地点,确定调荷点,三是负荷实测工作既要定期开展也要不定期开展,尤其是在大的用户负荷投运和在高峰负荷期间,要增加实测的次数,通过及时的测量配变低压出线和接近用户端的低压线路电流,便于准确地了解设备的运行情况,做好负荷的均衡合理分配。
项目研究背景
信息来源:http://365zhanlan.com
为严格贯彻落实上级部门要求,全面推动“低电压”综合治理试点工作,结合江西省广丰县低电压实际情况,选取有代表性的台区开展配变三相负荷不平衡治理研究,分析总结治理效果和工作经验,制定一套通过配变三相负荷不平衡治理,达到提高客户端电压和降低损耗的工作流程和标准,实现以点带面,达到解决三相负荷不平衡造成用户出现低电压问题的目的。信息来源:http://365zhanlan.com项目研究内容
信息来源:http://www.daodoc.com
2.1 项目研究解决的关键问题和主要思路 信息来源:http://www.daodoc.com
变压器在三相负荷不平衡运行时,由于变压器绕组压降不同,出口电压不均衡,用户端电压更是三相偏差较大,电压质量得不到保障。当低压三相负荷不平衡时,不论在三相四线上线路带的负荷如何分配,负荷不平衡度越大,线损增量也越大。当线路输送有效功率P和无功功率Q越大(电流越大)时,线路压降越大,如果某一相负荷过大,而线路线径较小,在线路末端则可能出现低电压。通过调整三相负荷分配,降低三相负荷不平衡率,可以有效降低线路电流,减少压降,提高末端电压。信息来源:http://365zhanlan.com
2.2 改善三相负荷不平衡的调整措施 信息来源:http://365zhanlan.com
通过前期开展的大量调查、分析工作,找出造成配变三相负荷不平衡的原因,并结合实际管理情况,制定出了以下措施,对配变三相负荷不平衡情况进行治理。信息来源:www.daodoc.com
由于台区主要供电方式为单相两线供电,如果不进行线路改造,在进行三相负荷调整时只能将整片的客户负荷进行调整,很难降低三相负荷不平衡率。针对现有采用单相二线制供电的台区,建议对负荷大、容易出现或已经出现“低电压”现象的线路进行线路改造,加大线径和改为三相四线制供电,然后根据台区负荷分布情况制定台区客户接线相序计划,进行三相负荷调整工作,降低配变三相负荷不平衡率,提高末端电压,降低损耗。信息来源:365zhanlan.com
运行管理理念滞后,台区管理人员对三相负荷不平衡管理观念淡薄,未对三相负荷不平衡进行治理。修订《业扩报装管理办法》和相关工作流程。针对新增、移表、迁址等容易造成台区负荷分布发生变化的用电业务流程,在现场查勘环节中,增加台区三相负荷分布、客户负荷等查勘内容情况;在《供电方案》中,增加客户接线相序意见;要求在装表接电时应严格按查勘意见进行施工,并在验收环节中核对实际接线相序是否与查勘意见一致。信息来源:http://www.daodoc.com
农村负荷构成变化造成三相负荷不平衡的情况在所有台区均会出现,可依据本次课题研究经验,制定《配变低压三相负荷测试及调整管理办法》,通过建立常态管理机制,规范配变三相负荷的管理与考核制度,依靠加强对配变负荷的日常监测、分析,有针对性地制定技改计划和三相负荷调整计划,对客户接线相序进行调整,确保配变三相负荷不平衡率可控、在控。信息来源:http://www.daodoc.com
客户内部负荷不平衡导致台区三相负荷不平衡,应加强与客户的沟通协调,向客户说明达到三相负荷平衡后的安全性和经济性,取得客户的支持,帮助客户对内部进行三相负荷调整。信息来源:http://www.daodoc.com
2.3 预期目标
信息来源:http://365zhanlan.com
通过配变三相负荷的调整,将配变三相负荷不平衡率控制在标准范围以内,达到有效提高客户端电压和降低线路损耗的目标。请登陆:www.daodoc.com 浏览更多信息项目执行情况 信息来源:www.daodoc.com
根据以上分析,广丰供电公司选择了两个代表性台区,分别采用技术改造(三相四线改造)和加强管理手段(单纯采用调整客户接线相序)两种方式对台区三相负荷进行调整。信息来源:http://www.daodoc.com
3.1 枧底供电所蔡家台区 请登陆:www.daodoc.com 浏览更多信息
对于主线是三相四线,支线及以下是二线供电的蔡家台区,通过延伸低压四线,调整支线的搭火相位达到主线负荷的平衡,降低台区的三相负荷不平衡率。请登陆:www.daodoc.com 浏览更多信息
经进行线路改造后,三相四线低压线路基本可以到达各居民片区负荷中心,经调整后,线路各节点三相负荷基本平衡,如图1所示,线路末端客户电压符合标准,台区消除了低电压情况,同时由于供电线路导线截面加大和改为三相四线供电后,提高了线路供电能力。信息来源:http://www.daodoc.com
调整后经实测负荷高峰时段,变台输出电压为:A相226 V,B相224 V,C相225 V,原有21户低电压客户电压在210~214 V之间,电压符合标准。调整前蔡家台区低压线损率13.28%,调整后线损率为11.65%,线损率下降1.63个百分点。
请登陆:www.daodoc.com 浏览更多信息
3.2 桐畈供电所上墩台区 信息来源:365zhanlan.com
上墩台区配变位于两个自然村中间偏上墩方向,其主要供电方式为三相四线制供电,线路结构较好,但客户接线相序分配很随意。其中上墩片A相用户2户,B相用户13户,C相用户44户,三相负荷不平衡率达96%,但由于变压器三档运行,加上上墩片供电距离近,线路电压损失小,末段电压仍可以达到标准;下墩片A相用户34户,B相用户16户,C相用户38户,三相负荷不平衡率达80%,由于线路距离较长,C相用户负荷较大,电压损失值较高,在最末段线路上有20户客户压降超过8.6%,其中用电客户俞直树、俞方全家电压压降超过17%,如果在负荷高峰,变压器输出电压降低,同时低压线路电流增大,势必造成以上20户客户出现“低电压”情况。信息来源:www.daodoc.com
根据以上分析,上墩台区可以采用直接改变客户接线相序,或调整部分二线分支点接线相序的方式,对配变三相负荷不平衡率进行调整,降低C相线路电流,减少压降。对于三相四线已覆盖的地方,通过调整用户的相位,来实现支线负荷的平衡,确保主线的负荷平衡。首先通过“静态”调整客户搭火相位,基本实现支线负荷的平衡;在此基础上,在部分用户端安装负荷转换开关,通过此开关“动态”调整客户搭火相位,实现支线负荷的平衡,最终达到主线的负荷平衡。信息来源:http://www.daodoc.com
用户端安装负荷转换开关,利用类似吊扇变换档位方法,制做一种能切换三相电源的旋转开关。对电量较大单相客户(3户以上)安装旋转开关(每只70元),通过切换用户所接电源相序,确保分支线三相负荷平衡,有效提高线路末段客户电压,解决居民“低电压”问题,降低台区线损率。信息来源:365zhanlan.com
使用旋转开关,可随负荷变化增加调整次数,缩短调购电成本45元/月,全年增加效益540元。
低压电网三相不平衡问题的影响及解决方法
近年来,由于城农网改造及加强供用电管理,使供电企业的经济和社会效益有了明显提高。但一些单位在加强管理、降损节能的同时,只看到了许多表面化现象,而对有关技术改进方面缺少足够的重视。
低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。
一、低压电网三相平衡的重要性
1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。
2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。
3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。
有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。
4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。
二、三相负载不平衡的影响
1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。
2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。
3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力要受到每相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少。其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,即极易引发配变发热,严重时甚至会造成配变烧损。
4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通。(高压侧没有零序电流)这迫使零序磁通只能以油箱壁及钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,即要产生磁滞和涡流损耗,从而使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存也会增加配变的损耗。
5.影响用电设备的安全运行。配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部每相压降也基本相同,则配变输出的三相电压也是平衡的。
假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。
6.电动机效率降低。配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。
三、如何实现三相负载平衡
综上所述,调整三相负载使之趋于平衡,这是无需增加设备投资的最佳降损措施。把单相用户均衡地接在A、B、C三相上,减少中性线电流,降低损耗。同时要减少单相负载接户线的总长度。如果单相用户功率因数较低,就应进行无功补偿。也可以装置三相断相保护器,当任何一相断相时,能立即切断电源以消除三相不平衡。
实际中,每相的用电负荷比较直观:动力线路三相平衡,而单相用户负荷有较大差异。每相的对地阻抗又由什么决定呢?三相动力线路一般质量较好,对地绝缘阻抗较高;而涉及到职明等单相负荷则用电线路情况复杂、质量低劣、绝缘程度差,使该相的对地阻抗显著降低,且用电户数越多,线路越密杂,则绝缘程度越差,使接带该类用户多相的对地阻抗降低越显著。因此,在正常漏电(总漏电电流由各处微小的漏电流汇集组成)情况下,每相对地阻抗的高低主要由接在该相上的单相负荷用电户的多少来决定。
因此,只要把单相负荷用电户均衡地分配到三相上,就能实现三相平衡。但必须要注意,均衡分配用户不仅仅是形式上看来每相接单相负荷用户总数的三分之一,而是要把其中用电负荷、漏电情况在同一等级的用户也均衡地分配到三相上。例如,某村单相用户,其中用电水平一般户,负荷较小,日用电时间较短,线路质量较差;用电水平较高户,负荷较大,日用电时间较长,线路质量较好;地埋线户,泄露电流较大,则每相上应尽量接这三类用户的各三分之一。
具体实施为(1)从公用变出线至进户表电源侧的低压干线、分支线应尽量采用三相四线制,减少迂回,避免交叉跨越。(2)无论架空或电缆线路,相线与零线应按A、B、C、O采用不同颜色的导线或标识,并按一定顺序排列。(3)在低压线路架好、下线集装各户电能表前,要把配变下的单相负荷用电户统一规划,均衡地分配到低压线路的三相上,并记录在册。下线集表施工时要查对无误。表箱编号要注明相位,如“***线路A相**号”。(4)下线集表完工后,要看一下低压电网实际运行三相负载是否在平衡度范围内,必要时可做些调整。(5)在以后发展用户或变更用户时,要顾及三相平衡问题,在实际工作中形成常态机制,不断完善提高。
没有绝对的平衡,但要相对的平衡,以平衡度指标为限,在实际工作中加大负荷调查分析力度,将各配变各类负载最大、平均负荷及发展趋势记录在案,经常性对目2变负荷电流进行测试,及时发现不平衡超标情况,反馈负荷分析同时,不定期组织进行有针对性地调整。只有这样,才能从根本上控制不平衡现象发生,避免发生损坏用电设备等故障和事故。
浅谈配网变压器负荷不平衡的危害与解决
摘要:本文分析了配网变压器负荷不平衡引起的危害,提出其相应的解决方法,并通过矢量图与算例分析证明了该解决方法的可行性与科学性 关键词:配网变压器/三相负荷不平衡、危害
一、引言
由于目前我国城乡配电网中一般都采用了三相四线制接线方式,即大部分配电变压器均采用Y/Yo接线方式,但大部分居民用电、商业用电、个体经营工厂都是单相负载,即使是大型工厂由于其内部负荷分配不正确也会造成配网变压器三相负荷的不平衡,所以无法避免配电变压器在三相负荷不平衡的情况下运行。国标GB50052《变压器运行规程》、《供配电设计规范》中规定了Y/Yo接线的配电变压器运行时所允许的中线点电流不能超过变压器相电流及线电流的25%,而三相负荷不平衡必然引起中性点电压偏移,从而产生中性点电流,它与三相负荷不平衡的严重性成正比,一旦中性点电流增加就会引起变压器损耗与中性点电位的偏移超过规程允许值,必然导致配网变压器的损坏[1]。本文详细分析了这些影响,并据此提出解决方法以尽可能地解决三相负荷不平衡所带来的附加损耗与中性点电压偏移的危害。
二、配网变压器负荷不平衡的危害
2.1配变负荷不平衡的损耗分析
①配变负荷不平衡的附加铁损分析。Y/Yo接线的配网变压器多采用三铁心柱结构,当发生三相负荷不平衡或者出现接地故障时,其一次侧无零序电流存在,二次侧有零序电流存在,因此二次侧的零序电流完全是励磁电流,产生的零序磁通不能在铁心中闭合,需通过油箱壁闭合,从而在铁箱等附件中发热产生铁损。Y/Yno接线变压器的零序电阻比正序电阻大得多,变压器的正序电阻可测得,一般在铭牌上用Ud%表示,从资料上可以查得一般315kVA变压器的零序电阻是正序电阻的15倍[2],因此零序电流所产生的附加铁损相当大的。
②配变负荷不平衡的附加铜损分析。配电变压器运行时三相绕组的总损耗(单位为kW)可计算为:Pf1=(Ia2+Ib2+Ic2)R1×10-3(1)
因此每相绕组的电流为:I相=(Ia+Ib+Ic)/3,三相电流平衡时,即I相=Ia=Ib=Ic,所以其三相绕组总的损耗为:
Pf2=3[(Ia+Ib+Ic)/3]2×R1×10-3(2)
故当三相电流平衡时Pf1=Pf2,就是说当变压器三相负荷平衡时,理论上是不会产生附加铜耗的。但是现实生活中,不可能存在着三相电流完全相同的情况,因此,当三相负荷失衡时,即Ia≠Ib≠Ic时所带来的附加损耗为:
△Pf=Pf2-Pf1 △Pf={[(Ia-Ib)2+(Ib-Ic)2+(Ic-Ia)2]/3}×R1×10-3(3)
从以上的分析可知:当变压器运行时,所引起的附加损耗基本上是由变压器的附加的铁耗与铜耗所组成,可知变压器三相电流接近平衡时运行附加损耗并不是很严重,可一旦变压器运行三相电流越来越不平衡时,附加损耗就很严重的,最严重时甚至于危害到电网设备的安全。
2.2配变负荷不平衡的电压偏移分析
由于Y/Yo接线的变压器负荷不平衡运行时,Y接的一侧没有零序电流,但由于每相电流不等,必然在Yo接线的变压器侧产生零序电流。因此在Yo接线侧产生的零序电流,就完全是励磁电流,产生的零序磁通重叠在主磁通上,感应出零序电动势,造成中性点电压偏移,而且是造成重负荷相电压降低,轻负荷相电压上升[3]。
2.3实例分析
为了进一步认识配网变压器三相不平衡运行时,产生大量的附加损耗和造成中性点电压严重偏移对电网产生极其严重的危害,在这里应用一个简单的算例来具体说明。型号为:S11-M.RL,315kVA,10kV/0.4kV的配网变压器;其零序电阻R0=0.122Ω,零序电抗X0=0.174Ω,绕组电阻R1=0.0084Ω。当它在Ia=100A,Ib=200A,Ic=300A,且cosψ=0.7的运行情况下,可以根据公式(1)、(2)、(3)计算可得:I0=173A,P0=I02×R0=3.65kW0=0.17kW,总损耗功率△P=P0+△Pf=3.82kW。因此一年下来在此运行方式下的损耗电量为:W=3.82×8760=33463kWh;如果按每度电0.6元计算,那么就是一台配网变压器一年的经济损失为20077.8元,如果再计算整个电网,那么损失就更加巨大了,我们无法接受。同时,通过计算得到中性点偏移电压为:
由上述算例分析可知,Y/Yo接线方式的配电变压器负荷不平衡运行带来的损耗与电压偏移是很大的,就目前来讲,过于严重的负荷不平衡运行是不允许存在的。
三、配变负荷不平衡的调整方法
从以上可知配网变压器严重的负荷不平衡运行是不允许存在的,那么有没有方法,解决这种矛盾呢?答案是可以的,首先从源头上抓起,在配网变压器新安装的时侯,我们就尽量平衡分配负荷,使得配变负荷不平衡情况从源头加以遏制。但是随着用户的增加,配变负荷平衡必然被打破,短时间内又无法进行负荷调整,那么我们也可以通过无功的补偿,实现负荷不平衡的调整,从而实现电网的经济运行,同时提高电能质量。
3.1无功补偿装置的原理。在三相系统中,跨接在相线与相线之间的电容或电感元件具有转移相间有功功率的作用,由于相间电感或电容元件的电流相量与每相电压相量成60°或120°夹角,可通过一个简单的示例来说明这一原理(在这里称为三相不平衡–无功补偿方法)。有一单相负荷接于A相与零线之间,其电流IA=100A,功率因数cosφa=0.85,其中有功电流为85A,无功电流为53A。在A、B相间接入产生61A电流的电容器时,相量图如图1所示,图中,UA为A相电压相量,IAB为接于A、B相间的电容器电流相量,超前A相电压120o;A相负荷情况为:无功电流为零,有功电流为54A,有功电流相量与无功电流相量合成的总电流为54A,A相有功负荷减少了;B相负荷的情况为:B相有功电流为31A,无功电流为53A,有功电流相量和无功电流相量合成的总电流为61A。
由图1可见,通过在A、B相间跨接一电容器,A相的有功转移到B相一部分,而接电容器前后A相与B相的有功之和并未改变,这说明通过这种方法可以在变压器三相之间调整有功,也就是说变压器的三相不平衡是可以通过无功的补偿进行调整,重新分配的。对于三相不平衡系统,可采用对称分量法将电流分解为正序电流、负序电流和零序电流,而三相平衡系统的电流只有正序电流,因此只需补偿掉负序电流和零序电流,不平衡的三相电流就可转变成平衡的三相电流[4]。采用星角混合接法的电容、电抗元件可补偿掉或大大减少零序电流与负序电流,使系统转变成基本平衡系统。
3.2实例分析
三相不平衡—无功补偿方法的接线如图2所示。实例参数采用2.3中的模型参数。图中,Ia、Ib、Ic为负荷电流;Iao、Ibo、Ico为星接补偿元件电流;Iab、Ibc、Ica为角接补偿元件电流。
(1)采用三相不平衡–无功补偿方法得到如下数据:①Iab=140A,Ico=120A,Ica=110A,Ibc=0,Iab=0,Iao=0;②A相补偿后电流ax=Ia+Iab¬-Ica+Iao,Iax=120A,功率因数为0.982(见图3(a));③B相补偿后电流Ibx=Ib+Ibc-Iab+Ibo,Ibx=140A,功率因数为0.9998(见图3(b));④C相补偿后电流Icx=Ic+Ica-Ibc+Ico,Icx=155A,功率因数为0.9999(见图3(c));⑤补偿后零序电流Io=45A。
(2)采用共补–分补的无功补偿装置将无功全部补偿[5],补偿相量图如图4所示,补偿后A相电流Iax=Ia+Iao,Iax=70A;补偿后B相电流bx=Ib+Ibo,Ibx=140A;补偿后C相电流Icx=Ic+Ico,Icx=210A;补偿后零序电流Io=120A。
比较图3和图4可见,三相不平衡–无功补偿方法与分补–共补方法相比,零序电流下降很多,使不平衡系统基本恢复到平衡状态。表
(一)为某供电线路采用三相不平衡–无功补偿装置补偿与采用普通的共补与分补补偿无功后相电流、零序电流、功率因数的对比情况,可以看出三相不平衡—无功补偿方法可以很好地降低零序电流,遏制中性点电压偏移,而采用一般的分补—共补进行无功补偿,则在补偿前后零序电流不一定会减少,而且还会增加,导致中性点电压偏移更严重,补偿的效果大打折扣。
四、结论
从上述对配网变压器负荷不平衡的变压器附加损耗、电压偏差分析可知,负荷失衡对变压器的附加损耗、电压偏差的影响是很大的,如不及时解决,最终会导致变压器烧毁,供电中断。但由于配电网的负荷失衡是无法消除,所以提出利用三相不平衡–无功补偿对变压器负荷不平衡进行无功补偿的方法,从而减少其危害。通过矢量图结合算例的有效分析,对比分补—共补无功补偿方法,验证这种方法简单而更加有效地解决配网变压器负荷不平衡的危害问题。
相负荷不平衡对配电网运行的影响分析 发布日期:2011-3-13 点击508次
当前单相负荷已经在低压配电网中占有相当大的比例,由于单相负荷投入的不同
时性以及在低压电网建设改造和运行维护的不到位,导致了低压配电网三相负荷分配不平衡,由此对低压配电网的运行造成了一定的影响,对此进行了原因分析并提出一些切实可行的解
决措施。
配电网、负荷、不平衡、分析
当前城乡配电网中大部分配电变压器均采用三相变压器,变压器出口三相负
荷理论上应该达到对称,但是在低压配电网中存在大量的单相负荷,由于单相负荷分布的不均
衡和投入的时间不同时性,使得三相负荷不平衡成为低压电网运行维护中一个比较突出的问
题,从电能质量和电网损耗两个方面来分析三相负荷不平衡所带来的影响,同时就此提出一些
切实可行的解决措施.三相负荷不平衡产生对电能质量的影响分析
目前在10千伏配变的绕组接线都采用Dyn0或者采用Yyn0的接线方式,配变一次绕
组无中性线、二次绕组中性线接地,并接有零线。在二次低压供电方式中一般采取3相4线制
供电。配变低压侧3相负荷不平衡直接体现在3相负荷电流的不对称,从电机学的原理来分
析3相不对称电流可以分解为对称的正序、负序、零序电流,也可以简单的看成是对称的3相负荷加上单相负荷负荷的叠加。由于配电变压器的一次绕组没有中性线,所以在二次绕组
侧产生的零序电流无法在一次绕组中平衡,零序电流在零序电阻上产生电压降直接导致了在配变二次侧产生了中性点位置偏移。
同样根据简单的电路原理也可以分析出,由于在A、B、C相的负荷不等,所以在A、B、C三相上的电流也就不等,那么A、B、C三相电流矢量和一般不等于0,也就是在中性线上的电流一般不等于0,也即零线电流一般不等于0,在实际情况下,零线的电阻是不等于0的,这样在零线上就存在电压,形成了中性点位移,导致了A、B、C相的相电压不对称,当某一相
上接的负荷越大,这一相上的电压也就越低,而另外两相的电压将变高,所以当三相负荷的差值越大,也就是三相负荷的电流不平衡度越大,那么中性点的位移也就越大,所以导致电
压的偏差也就越大。在城区配网中大多数低压负荷为照明和家用电器,这些都是单相负荷,同时用户的单相负荷的启用时间又不同时,所以三相电流的不平衡将会很明显,导致了某些
用户的电压偏低,有些用户的电压偏高,特别是在夏天用电高峰期间,我们发现在有些配变的某一相上接了多台空调,在同时启动是就会产生单相电流严重超过其他两相,导致该相上的电压偏低,使有些用户的电器无法启动。这就是3相负荷不平衡导致3相电流、电压出现
不对称的产生的原因。三相负荷不平衡对线损的影响分析:
2.1 三相负荷不平衡造成低压线路电能损耗增大。
低压配电线路有三相四线制、三相三线制、单相二线制等供电形式,线路交错繁杂,各相电流不平衡,沿线负荷分布没有一定规律,并且缺乏完整的线路参数和负荷资料,所以
要准确地计算线路损耗是比较困难的,目前利用电流或者电压的不平衡度结合电流电压的向量计算在实际情况下比较复杂
同时在实际应用中也不太切实可行,在利用一种简单近似的方法推导出因为的对低压配网的损耗影响,以目前低压配网常见的三相四线制的接线方式分析,设定3相负荷平衡下3相负荷
为3P
负载
=P+P+P=3P(P=P=P=P),此时的线路损耗为设定P
ABCC
AA
ABC
ABC
ABC
损耗
=I2R+I2R+I2R=3I2R=3P2/U2(I=I=I=I,R=R=R=R),假设三相负荷出现最严重偏
AB
相的情况下,即出现二相缺相运行,假设所有负荷接在C相的情况上运行,同时认为每个电
气节点的电压相等,P
损耗,=I,2 *R=(3P/U)2 *R=9P2/U2 *R=9P
C
可以推出当出现负荷最严重偏相时,低压线路的损耗增加了6倍。
目前由于低压电网的3相负荷分布不均的现象比较普遍,负荷分配的实时变化很大,所以如果引入实际情况下的电流、电压的矢量值计算非常烦琐,而且意义不大,在这里引入
一种平均不平衡度的计算,在正常的误差范围内,可以说明负荷分配的不平衡对电网低压线
路的损耗变化的影响,设定三相负荷为P、P、P,三相的平均负荷为Pav为(P+P+P)
ABCABC
/3,假定各相功率因数相同, 每个电气节点的电压相等,三相的负荷的平均不平衡度对应为
△A、△B、△C,(△A=(P-Pav)/ Pav的差值)
A
相线的功率损耗为:
P损耗=I2*R+I2*R+I2*R=[Pav(1+△A)/ U]2*R+[Pav(1+△B)/ U]2*R+[Pav(1+△A)/
ABC
U]2*R=(U/R)2*Pav2[(1+△A)2+(1+△B)2+(1+△A)2]=(Pav*U/R)2 *[(1+△A)2+(1+△B)2+
(1+△C)2]
因为△A+△B+△C=0,所以P损耗=(Pav*U/R)2 *[3+△A2+△B2+△C2],对此我们可以通过负
荷实际测量出A、B、C的实际负荷数值推出配变台区的相线低压损耗。
此外,在三相系统中每个相线对星形接法的中点电压间有120°的相位移动,故当每相的负荷
相等时,在零线上的电流为零。当三相负荷不均衡时,零线电流等于3相不平衡电流的矢量
和,在抵消基波电流后的不平衡电流流入零线,由于谐波的影响,零线电流可以达到相线电
流的1.5倍。此零线电流在零线回路造成的损耗在低压线路损耗中也占有一定的比例。
2.2 三相负荷不平衡造成配变自身电能损耗增大。
配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁
等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动
势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁
损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太
大,但是也不能忽视。
综上所述,,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。
所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。
低压电网三相不平衡问题的影响
发布时间:2011-11-15 来源:武汉华超 浏览人数:1826 低压电网的三相平衡一直就是困扰供电单位的主要问题之一,低压电网大多是经10/0.4KV变压器降压后,以三相四线制向用户供电,是三相生产用电与单相负载混合用电的供电网络。在装接单相用户时,供电部门应该将单相负载均衡地分接在A、B、C三相上。但在实际工作及运行中,线路的标志、接电人员的疏忽再加上由于单相用户的不可控增容、大功率单相负载的接入以及单相负载用电的不同时性等,都造成了三相负载的不平衡。低压电网若在三相负荷不平衡度较大情况下运行,将会给低压电网与电气设备造成不良影响。
一、低压电网三相平衡的重要性
1.三相负荷平衡是安全供电的基础。三相负荷不平衡,轻则降低线路和配电变压器的供电效率,重则会因重负荷相超载过多,可能造成某相导线烧断、开关烧坏甚至配电变压器单相烧毁等严重后果。
2.三相负荷平衡才能保证用户的电能质量。三相负荷严重不对称,中性点电位就会发生偏移,线路压降和功率损失就会大大增加。接在重负荷相的单相用户易出现电压偏低,电灯不亮、电器效能降低、小水泵易烧毁等问题。而接在轻负荷相的单相用户易出现电压偏高,可能造成电器绝缘击穿、缩短电器使用寿命或损坏电器。对动力用户来说,三相电压不平衡,会引起电机过热现象。
3.三相负荷保持平衡是节约能耗、降损降价的基础。三相负荷不平衡将产生不平衡电压,加大电压偏移,增大中性线电流,从而增大线路损耗。实践证明,一般情况下三相负荷不平衡可引起线损率升高2%-10%,三相负荷不平衡度若超过10%,则线损显著增加。有关规程规定:配电变压器出口处的负荷电流不平衡度应小于10%,中性线电流不应超过低压侧额定电流的25%,低压主干线及主要分支线的首端电流不平衡度应小于20%。通过电网技术改造,要真正使低压电网线损达到12%以下,上述指标只能紧缩,不能放大。
4.只有三相阻抗平衡,才能保证低压漏电总保护良好运行,防止人身触电伤亡事故。
二、三相负载不平衡的影响
1.配变长期偏负荷运行主要是三相电流没有调整平衡所致。三相电流不平衡,尤其在高温下运行,极易引发配变烧坏。另外,在低压供电系统中,配电变压器的三相负荷平衡状况与电能损耗有一定的关系。三相负荷基本平衡时,零线没有电流流过,这是电能损耗最小。当三相负荷严重不平衡时,零线有电流流过,这是电能损耗就会增大。我们平时测试三相负荷平衡,一般用钳形电流表在变压器二次出口测量,如果发现三相负荷值接近,就认为是平衡了,但是这可能是表面化的平衡,仍然可能存在较大的电能损耗。配电变压器的三相电流平衡,必须让每个节点电流平衡,才能保证低压电网在最佳的运行状态。
2.配电变压器在三相负荷不平衡状态下运行,在低压侧产生零序电流。对于Y/Y0接线的配电变压器来说,变压器高压侧无中性线,所以高压侧无零序电流,低压侧零序电流产生的零序磁通就不能和高压侧相互抵消。所以,零序磁通将从通过配电变压器的铁心、油箱壁等钢铁构件中,因为铁心等构件本身也是导体,在垂直于磁力线的平面上就会产生感应电动势,这个电动势形成闭合回路并产生电流,使变压器的损耗增加,这也就是常讲的变压器的铁损增加了。目前虽然由于三相负荷不平衡造成配变自身电能损耗在整个配电网中损耗不是太大,但是也不能忽视。
因此,低压配电网三相负荷不平衡,将降低配变出力,增大线路上的功率损失,影响电压质量。因此在有关设计运行的规程中提出变压器三相负载不平衡率不能大于20%。所以解决三相负荷不平衡已经成为做好配电网运行的重要工作。
三相负载不平衡的影响
发布时间:2010年04月23日
1.增加线路的电能损耗。在三相四线制供电网络中,电流通过线路导线时,因存在阻抗必将产生电能损耗,其损耗与通过电流的平方成正比。当低压电网以三相四线制供电时,由于有单相负载存在,造成三相负载不平衡在所难免。当三相负载不平衡运行时,中性线即有电流通过。这样不但相线有损耗,而且中性线也产生损耗,从而增加了电网线路的损耗。
2.增加配电变压器的电能损耗。配电变压器是低压电网的供电主设备,当其在三相负载不平衡工况下运行时,将会造成配变损耗的增加。因为配变的功率损耗是随负载的不平衡度而变化的。
3.配变出力减少。配变设计时,其绕组结构是按负载平衡运行工况设计的,其绕组性能基本一致,各相额定容量相等。配变的最大允许出力受到各相额定容量的限制。假如当配变处于三相负载不平衡工况下运行,负载轻的一相就有富余容量,从而使配变的出力减少,其出力减少程度与三相负载的不平衡度有关。三相负载不平衡越大,配变出力减少越多。为此,配变在三相负载不平衡时运行,其输出的容量就无法达到额定值,其备用容量亦相应减少,过载能力也降低。假如配变在过载工况下运行,极易引发配变发热,严重时甚至会造成配变烧损。
4.配变产生零序电流。配变在三相负载不平衡工况下运行,将产生零序电流,该电流将随三相负载不平衡的程度而变化,不平衡度越大,则零序电流也越大。运行中的配变若存在零序电流,则其铁芯中将产生零序磁通(高压侧没有零序电流)。这迫使零序磁通只能以油箱壁和钢构件作为通道通过,而钢构件的导磁率较低,零序电流通过钢构件时,就会产生磁滞和涡流损耗使配变的钢构件局部温度升高发热。配变的绕组绝缘因过热而加快老化,导致设备寿命降低。同时,零序电流的存在也会增加配变的损耗。
5.影响用电设备的安全运行。配变是根据三相负载平衡运行工况设计的,其每相绕组的电阻、漏抗和激磁阻抗基本一致。当配变在三相负载平衡时运行,其三相电流基本相等,配变内部各相压降也基本相同,则配变输出的三相电压也是平衡的。
假如配变在三相负载不平衡时运行,其各相输出电流就不相等,其配变内部三相压降就不相等,这必将导致配变输出电压三相不平衡。同时,配变在三相负载不平衡时运行,三相输出电流不一样,而中性线就会有电流通过。因而使中性线产生阻抗压降,从而导致中性点漂移,致使各相相电压发生变化。负载重的一相电压降低,而负载轻的一相电压升高。在电压不平衡状况下供电,即容易造成电压高的一相接带的用户用电设备烧坏,而电压低的一相接带的用户用电设备则可能无法使用。所以三相负载不平衡运行时,将严重危及用电设备的安全运行。
6.电动机效率降低。配变在三相负载不平衡工况下运行,将引起输出电压三相不平衡。由于不平衡电压存在着正序、负序、零序三个电压分量,当这种不平衡的电压输入电动机后,负序电压产生旋转磁场与正序电压产生的旋转磁场相反,起到制动作用。但由于正序磁场比负序磁场要强得多,电动机仍按正序磁场方向转动。而由于负序磁场的制动作用,必将引起电动机输出功率减少,从而导致电动机效率降低。同时,电动机的温升和无功损耗,也将随三相电压的不平衡度而增大。所以电动机在三相电压不平衡状况下运行,是非常不经济和不安全的。
变压器空载时三相电压不平衡原因分析近年来欧阳海水电站因供电负荷不断增长,原来的两台变压器容量已不能满足需求,常过载运行。为了增加供电量,故将2号变压器容量由4MVA更换为6......
配电变压器三相不平衡技术分析与管理措施研究 摘要:配电变压器的三相不平衡运行是不可避免的,防止配电变压器三相不平衡运行是节能、提高电能质量的手段之一。本文分析造成配......
配电变压器三相负载不平衡的危害和治理措施研究郭宇航山东省菏泽第一中学, 山东省菏泽市274000 摘要:在我国的城乡居民供电系统中,由于每家每户用的电器不同,那么负荷必然也不......
不平衡的心理为一个学对于迷漫的天空有着迷梦的早晨,美丽的生活是那么的快乐,在生活中也有悲哀,我知道每一个人都会有悲哀,我相信大家也不要老记着它,作为一个人的失误当然......
刀豆文库小编为你整合推荐6篇心理不平衡作文,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
