复习讲义(4)—二面角复习课_b4unit4复习讲义

2020-02-28 其他范文 下载本文

复习讲义(4)—二面角复习课由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“b4unit4复习讲义”。

复习讲义(4)

二面角复习课

一、教学目标:1.使学生进一步掌握好二面角及二面角的平面角的概念;

2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.

二、重点和难点:使学生能够作出二面角的平面角;根据题目的条件,作出二面角的平面角.

三、教学过程

1.复习二面角的平面角的定义.

空间图形的位置关系是立体几何的重要内容.解决立体几何问题的关键在于做好:定性分析,定位作图,定量计算,其中定性是定位、定量的基础,而定量则是定位,定性的深化.在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般说来,对其平面角的定位是问题解决的关键一步.可是学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定位,使问题的解决徒劳无益.

看右图.

如图1:α,β是由l出发的两个半平面,O是l上任意一点,OC α,且OC⊥l;OD

β,且OD⊥l.这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角.从中我们可以得到下列特征:

(1)过棱上任意一点,其平面角是唯一的;(2)其平面角所在平面与其两个半平面均垂直;

另外,如果在OC上任取一点A,作AB⊥OD,垂足为B,那么由特征(2)可知AB⊥β.突出l,OC,OD,AB,这便是另一特征.

(3)体现出一完整的三垂线定理(或逆定理)的条件背景.

特征(1)表明,其平面角的定位可先在棱上取一“点”.耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题的条件背景互相沟通,给计算提供方便.

例1 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH⊥面ABC,垂足为H,求侧面与底面所成的角的大小.

分析:由已知条件可知,顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,由三垂线定理可知,VO⊥AB,则∠VOC为侧面与底面所成二面角的平面角.(图2)

正因为此四面体的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而

且使得题设背影突出在面VOC上,给进一步定量创造了得天独厚的条件.

特征(2)指出,如果二面角α-l-β的棱l垂直某一平面γ,那么l必垂直γ与α,β的交线,而交线所成的角就是α-l-β的平面角.(如图3)

由此可见,二面角的平面角的定位可以考虑找“垂平面”.

例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.

这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后的“变”与“不变”.

如果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA,OE与BD的垂直关系不变.但OA与OE此时变成相交两线并确定一平面,此平面必与棱垂直.

由特征(2)可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角.

另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了可能.

在Rt△AA′O中,∠AA′O=90°,通过对例2的定性分析、定位作图和定量计算,特征(2)从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角.“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量.

特征(3)显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理的逆定理可知OB⊥l.此时,∠AOB就是二面角α-l-β的平面角.(如

图6),由此可见,二面角的平面角的定位可以找“垂线段”.

课堂练习

1.在正方体ABCD-A1B1C1D1中,棱长为2,E为BC的中点,求面B1D1E与面BB1C1C所成的二面角的大小的正切值.

练习1的条件背景表明,面B1D1E与面BB1C1C构成两个二面角,由特征(2)可知,这两个二面角的大小必定互补.

为创造一完整的三垂线定理的环境背景,线段C1D1会让我们眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1)即得面D1B1E与面CC1B1E所成二面角的平面角∠C1OD1,2.将棱长为a的正四面体的一个面与棱长为a的正四棱锥的一个侧面吻合,则吻合后的几何体呈现几个面?

分析:这道题,学生答“7个面”的占99.9%,少数应服从多数吗?

从例题中三个特征提供的思路在解决问题时各具特色,它们的目标分别是找“点”、“垂面”、“垂线段”.事实上,我们只要找到其中一个,另两个就接踵而来.掌握这种关系对提高解题技能和培养空间想象能力非常重要.

本题如果能融合三个特征对思维的监控,可有效地克服、抑制思维的消极作用,培养思维的广阔性和批判性.

如图9,过两个几何体的高线VP,VQ的垂足P,Q分别作BC的垂线,则垂足重合于O,且O为BC的中点.OP延长过A,OQ延长交ED于R,考虑到三垂线定理的环境背影,∠AOR为二面角A-BC-R的平面角,结合特征(1),(2),可得VAOR为平行四边形,VA∥BE,所以V,A,B,E共面.同理V,A,C,D共面.所以这道题的正确答案应该是5个面.

例3 如图10,在正方体ABCD-A1B1C1D1中,E是BC的中点,F在AA1上,且A1F∶

FA=1∶2,求平面B1EF与底面A1C1所成的二面角大小的正切值.

分析:在给定的平面B1EF与底面A1C1所成的二面角中,没有出现二面角的棱,我们可以设法在二面角的两个面内找出两个面的共点,则这两个公共点的连线即为二面角的棱,最后借助这条棱作出二面角的平面角.

略解:如图10.在面BB1CC1内,作EH⊥B1C1于H,连结HA1,显然直线EF在底面A1C1的射影为HA1.

延长EF,HA1交于G,过G,B1的直线为所求二面角的棱. 在平面A1B1C1D1内,作HK⊥GB1于K,连EK,则∠HKE为所求二面角的平面角.

在平面A1B1C1D1内,作B1L⊥GH于L,利用Rt△GLB1∽Rt△GKH,可求得KH. 又在Rt△EKH中,设EH=a,容易得到:所求二面角大小的正切值

注:我们也可以不直接作出二面角的平面角,而通过等价变换或具体的计算得出其平面角的大小.我们可以使用平移法.由两平面平行的性质可知,若两平行平面同时与 到的一个二面角.

因为 AB∥平面CPD,AB

平面APB,平面CPD∩平面APB=l,所以 AB∥l.过P作PE⊥AB,PE⊥CD.因为 l∥AB∥CD,因此 PE⊥l,PF⊥l,所以 ∠EPF是二面角B-l-C的平面角.

因为 PE是正三角形APB的一条高线,且AB=a,因为 E,F分别是AB,CD的中点,所以 EF=BC=a. 在△EFP中,小结:二面角及其平面角的正确而合理的定位,要在正确理解其定义的基础上,掌握其基本特征,并灵活运用它们考察问题的背景.我们已经看到,定位是为了定量,求角的大小往往要化归到一个三角形中去解,因此寻找“垂线段”,把问题化归是十分重要的.

四、作业:

1.120°二面角α-l-β内有一点P,若P到两个面α,β的距离分别为3和1,求P到l的距离.

2.正方体ABCD-A1B1C1D1中,求以BD1为棱,B1BD1与C1BD1为面的二面角的度数.

复习讲义(4)—二面角复习课

复习讲义(4) 二面角复习课 一、教学目标:1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.二、重点和......

高中数学教案:二面角复习课

高考资源网(www.daodoc.com),您身边的高考专家二面角复习课一、教学目标:1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问......

重庆大学微观经济学复习讲义

重庆大学微观经济学教案好好学习,天天向上!O(∩_∩)O~~~你重庆大学微观经济学教案好好学习,天天向上!O(∩_∩)O~~~ 目的。重庆大学微观经济学教案好好学习,天天向上!O(∩_∩)O~~~......

班级管理复习讲义

班级管理部分★ 复习导航班主任在班级管理中的地位和作用(简答)怎样建立和培养良好的班集体(简答)设计一个班会(论述)第一节:班级管理的意义班级管理:班级管理是一种有目的的活动,这......

二面角练习课

二面角练习课 教学目标1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力. 教学重点和难点重点:使学生......

《复习讲义(4)—二面角复习课.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
复习讲义(4)—二面角复习课
点击下载文档
相关专题 b4unit4复习讲义 讲义 b4unit4复习讲义 讲义
[其他范文]相关推荐
[其他范文]热门文章
下载全文