六年级期末典型应用题数量关系_应用题中常见数量关系
六年级期末典型应用题数量关系由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“应用题中常见数量关系”。
典型应用题数量关系归一问题
在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。总量÷份数=1份数量
1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数
先求出单一量,以单一量为标准,求出所要求的数量。2 归总问题
解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量
先求出总数量,再根据题意得出所求的数量。3 和差问题
已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
大数=(和+差)÷ 2 小数=(和-差)÷ 2 4 和倍问题
已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数 5 差倍问题
已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数 6 倍比问题
有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。总量÷一个数量=倍数 另一个数量×倍数=另一总量
先求出倍数,再用倍比关系求出要求的数。7 相遇问题
两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间 9 植树问题
按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。线形植树 棵数=距离÷棵距+1 环形植树 棵数=距离÷棵距
方形植树 棵数=距离÷棵距-4 三角形植树 棵数=距离÷棵距-3 面积植树 棵数=面积÷(棵距×行距)12 列车问题
这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。
火车过桥:过桥时间=(车长+桥长)÷车速 火车追及: 追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)
火车相遇: 相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)14 盈亏问题
根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。一般地说,在两次分配中,如果一次盈,一次亏,则有:
参加分配总人数=(盈+亏)÷分配差
如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差
参加分配总人数=(大亏-小亏)÷分配差 15 工程问题
工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间 工作时间=工作量÷工作效率 工作时间=总工作量÷(甲工作效率+乙工作效率)
变通后可以利用上述数量关系的公式。18 百分数问题
百分数是表示一个数是另一个数的百分之几的数。在实际中和常用到“百分点”这个概念,一个百分点就是1%,两个百分点就是2%。
掌握“百分数”、“标准量”“比较量”三者之间的数量关系:
百分数=比较量÷标准量 标准量=比较量÷百分数 一般有三种基本类型:
a)(1)求一个数是另一个数的几分之几(百分之 几)(基本型)
方法:一个数÷另一个数=几分之几(百分之几)(2)求一个数比另一个数多(或少)几分之几(百分之几)的应用题。(这部分应用题是基本类型的引伸)类型:1)已知甲、乙两数,求甲数比乙数多几分之几(百分之几);
2)已知甲、乙两数,求乙数比甲数少几分之几(百分之几);
方法:这类题的解法规律是先求出两个数的差,以差作为比较量。再除以单位1.第一类型(甲数-乙数)÷乙数 第二类型(甲数-乙数)÷甲数
(b)1)已知一个数,求它的几分之几(百分之几)是多少。(单位1是已知,用乘法)(基本类型)方法:一个数x几分之几(百分之几)=是多少 2)已知一个数,求比一个数多(或少)几分之几(或百分之几)的数是多少。(发展型)解题思路和方法:单位1是已知。一个数x(1+-几分之几)=是多少
(c)1)已知一个数的几分之几(百分之几)是多少,求这个数。(单位1是未知,用除法)(基本型)
方法:是多少÷几分之几(百分之几)=一个数 2)已知比一个数多(或少)几分之几(或百分之几)的数是多少,求这个数。(发展型)解题方法和思路:单位1是未知的。是多少÷(1+-几分之几)=这个数百分数又叫百分率,百分率在工农业生产中应用很广泛,常见的百分率有: 增长率=增长数÷原来基数×100% 合格率=合格产品数÷产品总数×100% 出勤率=实际出勤人数÷应出勤人数×100% 出勤率=实际出勤天数÷应出勤天数×100% 缺席率=缺席人数÷实有总人数×100% 发芽率=发芽种子数÷试验种子总数×100% 成活率=成活棵数÷种植总棵数×100% 出粉率=面粉重量÷小麦重量×100% 出油率=油的重量÷油料重量×100% 废品率=废品数量÷全部产品数量×100% 命中率=命中次数÷总次数×100% 烘干率=烘干后重量÷烘前重量×100% 及格率=及格人数÷参加考试人数×100% 20 鸡兔同笼问题
这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
第一鸡兔同笼问题:假设全都是鸡,则有 兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有
鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有 兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有 鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)21 方阵问题
将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
(1)方阵每边人数与四周人数的关系: 四周人数=(每边人数-1)×4 每边人数=四周人数÷4+1(2)方阵总人数的求法:
实心方阵:总人数=每边人数×每边人数 空心方阵:总人数=(外边人数)-(内边人数)内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则: 总人数=(每边人数-层数)×层数×4 方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。22 商品利润问题 这是一种在生产经营中经常遇到的问题,包括成本、利润、利润率和亏损、亏损率等方面的问题。利润=售价-进货价
利润率=(售价-进货价)÷进货价×100% 售价=进货价×(1+利润率)亏损=进货价-售价
亏损率=(进货价-售价)÷进货价×100% 存款利率问题
年(月)利率=利息÷本金÷存款年(月)数×100% 利息=本金×存款年(月)数×年(月)利率 本利和=本金+利息
=本金×[1+年(月)利率×存款年(月)数] 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
数量关系典型题目解析:1.1,6,20,56,144,().A.384B.352C.312D256解析:答案是B。研究“6,20,56”的数字递推关系,易知“(20-6)*4=56”,验算可知全部成立,即前两项差的4倍等于第三项。2.2,3......
浅谈应用题的数量关系教学数学是研究客观世界数量关系和空间形式的科学。《全日制义务教育数学课程标准》指出:“数与代数的内容主体包括数与式、方程与不等式、函数,它们都是......
刀豆文库小编为你整合推荐4篇除法应用题的常见的数量关系教案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
除法应用题的常见的数量关系教案除法应用题的常见的数量关系教案教学过程:一、复习引入请同学们回忆一下,我们学过乘法应用题中有哪些常见的数量关系?学生边回答,教师边在黑......
六年级数学教案—— 乘法应用题和常见的数量关系(二)教学内容:第27页例3和第28页例4。教学目的:使学生进一步认识一些常见的数量关系,初步理解速度、时间、路程和工效、时间、工......
