音频分类总结(算法综述)_对分类算法的综述
音频分类总结(算法综述)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“对分类算法的综述”。
总结音频分类的算法
刚开始对音频分割还有特征提取有些自己的想法,感觉应该能够分清楚,但是当开始查阅文献的时候,发现对他们两个的概念越来越模糊。很多时候他们是重叠的。后来我在一篇文献里找到这句话。觉得应该是这个道理:
音频数据的分类是一个模式识别的问题,它包括两个基本方面:特征选择和分类。
音频分割是在音频分类的基础上从音频流中提取出不同的音频类别,也就是说在时间轴上对音频流按类别进行划分。分类是分割的前提和基础。对音频流的准确分割是最终的目的。
于是我找了一下比较典型的分类算法
比较典型的音频分类算法包括最小距离方法、支持向量机、神经网络、决策树方法和隐马尔可夫模型方法等。
1.最小距离法。(典型的音频分类算法)最小距离分类法的优点是概念直观,方法简单,有利于建立多维空间分类方法的几何概念。在音频分类中应用的最小距离分类法有k近邻(k—Nearest Neighbor,简称K—NN)方法和最近特征线方法(Nearest Feature,简称NFL))等。
k近邻方法的思想是根据未知样本X最近邻的k个样本点的类别来确定X的类别。为此,需要计算X与所有样本x。的距离d(x,x。),并且从中选出最小的k个样本作为近邻样本集合KNN,计算其中所有属于类别Wj的距离之和,并且按照以下判别规则进行分类:C(x)argminC{W1,...,Wn}
d(x,xi),其中,C为类别集合由于k近邻方法利用了更多的样本信息确定它的类别,k取大一些有利于减少噪声的影响。但是由于k近邻方法中需要计算所有样本的距离,因此当样本数目非常大的时候,计算量就相当可观。取k=l时,k近邻方法就退化为最近邻方法。
最近特征线方法是从每一类的样本子空间中选取一些原型(Prototype)特征点,这些特征点的两两连线称为特征线(Feature Line),这些特征线的集合用来表示原先每一类的样本子空间。
设类C的原型特征点集合:,其中Nc为类C的原型特征点数目,则对应的特征线的数目为Sc,而类C的特征线集合{|XicXjc|1i,jNc,ij} i≠jl构成类C的特征线空间,它是类C的特征子空间。—般所选取的原型特征点的数目比较少,因此特征线的数目也比较少。未知样本X与特征线XicXjc的距离定义为x在XicXjc上的投影距离,如图4所示,而X与类别C的距离为X与类C的特征线空间中的所有特征线的最短距离。
2.神经网络(Neural Network)。
在使用神经网络进行音频分类时,可以令输入层的节点与音频的特征向量相对应,而输出层的节点对应于类别Ci。,如图5所示。在训练时,通过对训练样本集中的样本进行反复学习来调节网络,从而使全局误差函数取得最小值。这样,就可以期望该网络能够对新输入的待分类样本T输出正确的分类Ci。
3.支持向量机(support Vector Machine,简称为SVM)。
支持向量机是Vapnik等人提出的以结构风险最小化原理(Stuctural Risk Minimization Principle)为基础的分类方法。该方法最初来自于对二值分类问题的处理,其机理是在样本空间中寻找—个将训练集中的正例和反例两类样本点分割开来的分类超平面,并取得最大边缘(正样本与负样本到超平面的最小距离),如图6所示。该方法根据核空间理论将低维的输入空间数据通过某种非线性函数(即核函数)映射到—个高维空间中,并且线性判决只需要在高维空间中进行内积运算,从而解决了线性不可分的分类问题。
根据不同的分类问题,可以选用不同的核函数,常用的核函数有三种:
① 项式核函数:
② 径向基核函数:
③ Sigmoid核函数:
SVM训练算法主要有三类:二次规划算法,分解算法,增量算法。
4.决策树方法
决策树是一种结构简单、搜索效率高的分类器。这类方法以信息论为基础,对大量的实例选择重要的特征建立决策树,如图7所示。
最优决策树的构造是一个NP完全(NPComepletene)问题,其设计原则可以形式化地表示为
其中T为特定的决策树结构,F和d分别为分枝结,为在数据集合点的特征子集和决策规则,D为所有的训练数据,D上选取特征集合F和决策规则d训练得到的结构为T的决策树的分类错误的条件概率。因此,决策树的构造过程可以分为三个问题:选取合适的结构,为分枝结点选取合适的特征子集和决策规则。常用的决策树构造方法有非回溯的贪心(Greedy)算法和梯度上升算法。
5.隐马尔可夫模型(Hidden Markov Model,简HMM)方法。
隐马尔可夫模型(HMM)的音频分类性能较好,它的分类对象是语音(speech)、音乐(music)以及语音和音乐的混合(speech+music)共3类数据,根据极大似然准则判定它们的类别,最优分类精度可达90.28%。
HMM本质上是一种双重随机过程的有限状态自动机(stochastic finite-state automata),它具有刻画信号的时间统计特性的能力。双重随机过程是指满足Markov分布的状态转换Markov链以及每一状态的观察输出概率密度函数,共两个随机过程。HMM可以用3元组来表示:入;(A,B,),其中A是状态Si到Sj的转换概率矩阵,B是状态的观察输出概率密度,是状态的初始分布概率。
分类算法数据挖掘中有很多领域,分类就是其中之一,什么是分类, 分类就是把一些新得数据项映射到给定类别的中的某一个类别,比如说当我们发表一篇文章的时候,就可以自动的把这篇文......
(2018北京3).执行如图所示的程序框图,输出的s值为 A.B.C.D.,设计了下面的程序框图,则在空白框中应填入D.(2018全国2)7.为计算A. B.C.(2018北京3)(2018全国2)(2018天津3).阅读右边的程序框......
Linux音频驱动总结 参考文章:http://blog.csdn.net/droidphone/ http://blog.chinaunix.net/uid/22917448.html分析只列出部分重要代码,具体请参考linux3.0内核代码。Alsa架......
算法分块总结为备战2005年11月4日成都一战,特将已经做过的题目按算法分块做一个全面详细的总结,主要突出算法思路,尽量选取有代表性的题目,尽量做到算法的全面性,不漏任何ACM可......
算法分析与设计总结报告71110415 钱玉明在计算机软件专业中,算法分析与设计是一门非常重要的课程,很多人为它如痴如醉。很多问题的解决,程序的编写都要依赖它,在软件还是面向过......
