数学二项式定理教案模板(精选6篇)_数学教案模板范文
数学二项式定理教案模板(精选6篇)由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“数学教案模板范文”。
第1篇:高二数学教案:二项式定理
北京英才苑网站
http://www.daodoc.com与第r1项的系数是不同的概念。
三、教学重点、难点:二项式定理及二项展开式的通项公式的灵活运用。
四、教学过程:
(一)复习:
1.二项式定理及其特例:
0n1nrnrrnn
(1)(ab)nCnaCnabCnabCnb(nN),1rr
(2)(1x)n1CnxCnxxn.rnrr2.二项展开式的通项公式:Tr1Cnab.(二)新课讲解:
例1(1)求(12x)7的展开式的第四项的系数;(2)求(x)的展开式中x的系数及二项式系数。19x3解:(12x)7的展开式的第四项是T31C7(2x)3280x3,∴(12x)的展开式的第四项的系数是280. 7
(2)∵(x)的展开式的通项是Tr1C9x191r9r()r(1)rC9rx92r,xx∴92r3,r3,333∴x的系数(1)3C984,x3的二项式系数C984.
4例2 求(x3x4)的展开式中x的系数。
分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,也可以先把三项式分解成两个二项式的积,再用二项式定理展开。
解:(法一)(x3x4)[(x3x)4]
01C4(x23x)4C4(x23x)34
234C4(x23x)242C4(x23x)43C444,显然,上式中只有第四项中含x的项,33∴展开式中含x的项的系数是C434768
24444(法二):(x3x4)[(x1)(x4)](x1)(x4)
04132234(C4xC4xC4xC4xC4)04132234(C4xC4x4C4x42C4x43C444)
3433∴展开式中含x的项的系数是C44C44768. 22424
北京英才苑网站
http://www.daodoc.com4x(2Cm4Cn)x mn2211∴(2Cm4Cn)36,即m2n18,12xm14x展开式中含x2的项的系数为 n22222Cn42m22m8n28n,tCm∵m2n18,∴m182n,∴t2(182n)2(182n)8n8n16n148n612
3715337时,t取最小值,16(n2n),∴当n448*2但nN,∴ n5时,t即x项的系数最小,最小值为272,此时n5,m8.
例4 已知(x1)n的展开式中,前三项系数的绝对值依次成等差数列,24x
(1)证明展开式中没有常数项;(2)求展开式中所有的有理项。
解:由题意:2Cnr822211121Cn()2,即n29n80,∴n8(n1舍去)221r163rrrr1rr8rC80r8 24 ∴Tr1Cx(4)()C8xx1rx4222xrZ①若Tr1是常数项,则163r0,即163r0,∵rZ,这不可能,∴展开
4式中没有常数项; 8r②若Tr1是有理项,当且仅当163r为整数,∴0r8,rZ,∴ r0,4,8,4即展开式中有三项有理项,分别是:T1x4,T535x,T91x2.8256
五、课堂练习:课本第107页练习第5,6题。
六、课堂小结:1.三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性;
2.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r的限制;求有理项时要注意到指数及项数的整数性。
七、作业:课本第143页 复习参考题十第12题,补充: 1.已知x3a8的展开式中x的系数是ax19展开式中倒数第四项的系数的2倍,求
a,a,a,a,前n项的和;
12.(xx4)n的展开式中第3项的二项式系数比第2项的二项式系数大44,则展开式中
x
常数项。
23n3
第2篇:二项式定理及数学归纳法
二项式定理及数学归纳法
【真题体验】
1.(2012·苏北四市调研)已知an=(12)n(n∈N*)
(1)若an=a+2(a,b∈Z),求证:a是奇数;
(2)求证:对于任意n∈N*都存在正整数k,使得an=k-1k.12233nn证明(1)由二项式定理,得an=C0n+C2+Cn2)+Cn(2)+„+Cn(2),0244224所以a=Cn+C2n2)+Cn(2)+„=1+2Cn+2Cn+„,24因为2C2n+2Cn+„为偶数,所以a是奇数.
(2)由(1)设an=(1+2)n=a+b2(a,b∈Z),则(1-2)n=a-b2,所以a2-2b2=(a+b2)(a-b2)=(1+2)n(1-2)n=(1-2)n,当n为偶数时,a2=2b2+1,存在k=a2,使得an=a+b2=a+2b=kk-1,当n为奇数时,a2=2b2-1,存在k=2b2,使得an=a+b2=a+2b=k-1k,综上,对于任意n∈N*,都存在正整数k,使得an=k-1+k.2.(2010·江苏,23)已知△ABC的三边长都是有理数.
(1)求证:cos A是有理数;
(2)求证:对任意正整数n,cos nA是有理数.
b2+c2-a
2(1)证明 设三边长分别为a,b,c,cos A= 2bc
∵a,b,c是有理数,b2+c2-a2是有理数,分母2bc为正有理数,又有理数集对于除法具有封闭性,b2+c2-a2
∴必为有理数,∴cos A是有理数. 2bc
(2)证明 ①当n=1时,显然cos A是有理数;
当n=2时,∵cos 2A=2cos2A-1,因为cos A是有理数,∴cos 2A也是有理数;
②假设当n≤k(k≥2)时,结论成立,即cos kA、cos(k-1)A均是有理数. 当n=k+1时,cos(k+1)A=cos kAcos A-sin kAsin A
1=cos kAcos A-[cos(kA-A)-cos(kA+A)]
211=cos kAcos A-cos(k-1)Acos(k+1)A 22
解得:cos(k+1)A=2cos kAcos A-cos(k-1)A
∵cos A,cos kA,cos(k-1)A均是有理数,∴2cos kAcos A-cos(k-1)A是有理数,∴cos(k+1)A是有理数. 即当n=k+1时,结论成立.
综上所述,对于任意正整数n,cos nA是有理数. 【高考定位】
高考对本内容的考查主要有:
(1)二项式定理的简单应用,B级要求;(2)数学归纳法的简单应用,B级要求 【应对策略】
(1)对于二项式定理只要掌握二项式定理、通项、项的系数的求法,掌握赋值法即可.(2)数学归纳法主要是用来解决与自然数有关的命题.通常与数列、不等式证明等基础知识和基本技能相结合来考查逻辑推理能力,要了解数学归纳法的原理,并能加以简单的应用
.必备知识
1.二项式定理
n1n1nrrn
(1)二项式定理:(a+b)n=C0b+„+Crb+„+Cnna+Cnananb,上式中右边的多项
-
-
式叫做(a+b)n的二项展开式,其中Crn(r=1,2,3,„,n)叫做二项式系数,式中第r+1项叫
nrr
做展开式的通项,用Tr+1表示,即Tr+1=Crb; na
-
(2)(a+b)n展开式中二项式系数Crn(r=1,2,3,„,n)的性质:
nr
①与首末两端“等距离”的两项的二项式系数相等,即Crn=Cn;
-
12nn0213n1②C0.n+Cn+Cn+„+Cn=2;Cn+Cn+„=Cn+Cn+„=
2-
2.数学归纳法
运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.
必备方法
1.二项式定理
(1)求二项式定理中有关系数的和通常用“赋值法”.
nrr(2)二项式展开式的通项公式Tr+1=Crb是展开式的第r+1项,而不是第r项. na
-
2.数学归纳法
(1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形
式,然后利用归纳假设,经过恒等变形,得到结论.
(2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法.
(3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用.
(4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式.(5)解题时经常用到“归纳——猜想——证明”的思维模式.
命题角度一 二项式定理的应用
[命题要点](1)二项展开式中的二项式系数和展开式系数;(2)求二项展开式的特定项;(3)二项展开式的性质的应用.
【例1】►(2012·南师附中模拟)若二项式(1+2x)n展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项.
[审题视点] 根据展开式中第6项与第7项的系数相等,得到关于n的方程,解得n,再写出二项展开式系数,由二项式系数的性质得到结果.
解 ∵在(1+2x)n的展开式中第6项与第7项的系数相等,566r∴C5n2=Cn2,∴n=8,∴二项式系数是C8,r1rr1由Cr8≥C8且C8≥C8,得r=4,-
+
即展开式中二项式系数最大的项是第5项为C482.二项式系数的最大项与展开式系数的最大项不同,本题的第r+1项的二项
rr
式系数是Cr8,而展开式系数却是2C8,解题时要分清.
n
1【突破训练1】(2012·盐城模拟)已知数列{an}的首项为1,p(x)=a1C0n(1-x)+a2Cnx(1221n1n
-x)n1+a3Cnx(1-x)n2+„+anCn(1-x)+an+1Cnnxnx
-
-
-
-
(1)若数列{an}是公比为2的等比数列,求p(-1)的值;
(2)若数列{an}是公比为2的等差数列,求证:p(x)是关于x的一次多项式.(1)解 法一 由题设知,an=2n1.-
0n1n12n2n0
p(-1)=1·C02+2·C12+22·C22+„+2n·Cn2 n(-1)·n(-1)·n(-1)·n(-1)·
-
-
0n12n2=C02+Cn(-2)1·2n1+C22+„+ n(-2)·n(-2)·
-
-
nCn(-2)n·20=(-2+2)n=0.n1法二 若数列{an}是公比为2的等比数列,则an=2n1,故p(x)=C0n(1-x)+Cn(2x)(1
-
2n21n1nnn
-x)n1+C2+„+Cn(1-x)+Cnn(2x)(1-x)n(2x)n(2x)=[(1-x)+2x]=(1+x).-
-
-
-
所以p(-1)=0.(2)证明 若数列{an}是公差为2的等差数列,则an=2n-1.n1n1n1n1n
p(x)=a1C0+„+anCnx(1-x)+an+1Cnn(1-x)+a2Cnx(1-x)nx
-
-
-
n1n122n=C0+(1+4)Cnx(1-x)n2+„+(1+2n)Cnn(1-x)+(1+2)Cnx(1-x)nx
-
-
nn12n2n1n122=[C0+C2+„+Cn+2Cnx(1-x)nn(1-x)+C1nx(1-x)nx(1-x)nx]+2[Cnx(1-x)
-
-
-
-
n+„+Cnnx].
由二项式定理知,0n12n2nn
Cn(1-x)n+C1+C2+„+Cnnx(1-x)nx(1-x)nx=[(1-x)+x]=1.-
-
n!n-1!-1因为kCk=k=nnCknn-1,k!n-k!k-1!n-k!
n122n所以C1+2Cnx(1-x)n2+„+nCnnx(1-x)nx
-
-
n12n21n=nC0+nC1+„+nCnn-1x(1-x)n-1x(1-x)n-1x
-
-
-
n1n21n1=nx[C0+C1+„+Cn] n-1(1-x)n-1x(1-x)n-1x
-
-
-
-
=nx[(1-x)+x]n1=nx,-
所以p(x)=1+2nx.即p(x)是关于x的一次多项式.
命题角度二 数学归纳法的应用
[命题要点](1)证明代数恒等式;(2)证明不等式问题;(3)证明三角恒等式;(4)证明整除性问题.
xxx
1+1+„1+的展开式中,x的系数为an,x2的【例2】►(2012·南京模拟)记222系数为bn,其中n∈N*.(1)求an;
pq1
11+,对n∈N*,n≥2恒成立?证明(2)是否存在常数p,q(p<q),使bn=322你的结论.
[审题视点] 可以先用特殊值代入,求出p,q得到猜想,再用数学归纳法证明猜想的正确性.
1111
解(1)根据多项式乘法运算法则,得an=1-222
2pq171
1+1+,解得p=-2,q=-1.(2)计算得b2b3=.代入bn=8323221111121
1-=-n≥2且n∈N*)下面用数学归纳法证明bn1-2-3232341
①当n=2时,b2=
81121
②设n=k时成立,即bk=,323
4则当n=k+1时,a112111
bk+1=bk+=+++-+
32342221121
=+++.3234由①②可得结论成立.
运用数学归纳法证明命题P(n),由P(k)成立推证P(k+1)成立,一定要用到
条件P(k),否则不是数学归纳法证题.
1111【突破训练2】(2012·泰州中学调研)已知多项式f(n)=5+n4n3n.52330(1)求f(-1)及f(2)的值;
(2)试探求对一切整数n,f(n)是否一定是整数?并证明你的结论. 解(1)f(-1)=0,f(2)=17
(2)先用数学归纳法证明,对一切正整数n,f(n)是整数. ①当n=1时,f(1)=1,结论成立.
1111
②假设当n=k(k≥1,k∈N)时,结论成立,即f(k)=k5+k4+3-k是整数,则当n
523301111
=k+1时,f(k+1)=(k+1)5+k+1)4(k+1)3-(k+1)
52330
51423324
5C05k+C5k+C5k+C5k+C5k+C5=
4***C0C04k+C4k+C4k+C4k+C43k+C3k+C3k+C
3+-
(k+1)=f(k)+k4+4k3+6k2+4k+1.30
根据假设f(k)是整数,而k4+4k3+6k2+4k+1显然是整数. ∴f(k+1)是整数,从而当n=k+1时,结论也成立. 由①、②可知对一切正整数n,f(n)是整数.(Ⅰ)当n=0时,f(0)=0是整数
(Ⅱ)当n为负整数时,令n=-m,则m是正整数,由(Ⅰ)知f(m)是整数,111
1所以f(n)=f(-m)=(-m)5+-m)4+(-m)3--m)
523301111
5+m4-m3+=-f(m)+m4是整数.
52330综上,对一切整数n,f(n)一定是整数.
20.证明步骤要完整,变形要有依据
一、证明的两个步骤缺一不可 【例1】► 求证:2n>2n+1(n≥3). 解 用数学归纳法证明:
第一步:(1)n=3时,23=8,2×3+1=7,不等式2n>2n+1(n≥3)成立.
第二步:(2)假设n=k(k≥3,且k∈N*)时,不等式成立,即2k>2k+1,则2k1=2·2k>
+
2(2k+1)=4k+2=2(k+1)+2k>2(k+1)+1,即2k1>2(k+1)+1.所以当n=k+1时也成立.
+
老师叮咛:不验证初始值的正确性就没有归纳的基础,没有运用归纳假设的证明不是数学归纳法,证明的两个步骤缺一不可.二、正确写出从n=k(k≥n0,k∈N*)到n=k+1时应添加的项
【例2】► 用数学归纳法证明(n+1)(n+2)„(n+n)=2n·1·3·„·(2n-1),从k到k+1,左边需要增乘的代数式为________.
解析 当n=k时,左边=(k+1)(k+2)·„·(k+k),当n=k+1时,左边=[(k+1)+1][(k+1)+2]·„·[(k+1)+(k+1)] =(k+2)(k+3)„(k+k)(k+k+1)(k+k+2)k+k+1k+k+2=(k+1)(k+2)„(k+k)
k+1=(k+1)(k+2)„(k+k)[2(2k+1)],所以从k到k+1,左边需要增乘的代数式为2(2k+1). 答案 2(2k+1)
老师叮咛:要关注从n=k(k≥n0,k∈N*)到n=k+1时两个式子之间的实质区别,不能只看表面现象,正确写出从n=k(k≥n0,k∈N*)到n=k+1时应添加的项,才能进行正确的变形.如本题中就不能只添加k+1+k+1=2k+2.
第3篇:教案 二项式定理 教师版
10.5 二项式定理
●知识梳理
1.二项展开式的通项公式是解决与二项式定理有关问题的基础.2.二项展开式的性质是解题的关键.3.利用二项式展开式可以证明整除性问题,讨论项的有关性质,证明组合数恒等式,进行近似计算等.●点击双基
1.已知(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|等于 A.29
B.49
C.39
D.1 解析:x的奇数次方的系数都是负值,∴|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+…-a9.∴已知条件中只需赋值x=-1即可.答案:B 2.(2004年江苏,7)(2x+x)4的展开式中x3的系数是 A.6 B.12
C.24
D.48
2解析:(2x+x)4=x2(1+2x)4,在(1+2x)4中,x的系数为C24·2=24.答案:C 3.(2004年全国Ⅰ,5)(2x3-A.14
1xr23(7x)1x)7的展开式中常数项是
C.42
D.-42
1xr)r=C727r· B.-14
解析:设(2x3-
r)7的展开式中的第r+1项是Tr1=C7(2x3)7r(-(-1)r·x当-r2,61+3(7-r)=0,即r=6时,它为常数项,∴C67(-1)·2=14.答案:A 34.(2004年湖北,文14)已知(x+x213n)的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)
3解析:∵(x2+x13)n的展开式中各项系数和为128,313r)r=C7·x∴令x=1,即得所有项系数和为2n=128.r∴n=7.设该二项展开式中的r+1项为Tr1=C7(x2)7r·(x
6311r6,令6311r6=5即r=3时,x5项的系数为C37=35.答案:35 5.若(x+1)n=xn+…+ax3+bx2+cx+1(n∈N*),且a∶b=3∶1,那么n=_____________.2解析:a∶b=C3n∶Cn=3∶1,n=11.答案:11 ●典例剖析
【例1】 如果在(x+124x)n的展开式中,前三项系数成等差数列,求展开式中的有理项.解:展开式中前三项的系数分别为1,由题意得2×n2n2,n(n1)8,=1+n(n1)8,得n=8.12r163r设第r+1项为有理项,Tr1=C·有理项为T1=x4,T5=358r8·x
4,则r是4的倍数,所以r=0,4,8.x,T9=
1256x2.评述:求展开式中某一特定的项的问题常用通项公式,用待定系数法确定r.【例2】 求式子(|x|+解法一:(|x|+1|x|1|x|-2)3的展开式中的常数项.1|x|-2)3=(|x|+
-2)(|x|+
1|x|-2)(|x|+
1|x|1|x|-2)得到常数项的情况有:①三个括号中全取-2,得(-2)3;②一个括号取|x|,一个括号取∴常数项为(-2)3+(-12)=-20.解法二:(|x|+1|x|,一个括号取-2,得C13C12(-2)=-12,-2)3=(|x|-
1|x|)6.设第r+1项为常数项,r则Tr1=C6·(-1)r·(1|x|r)r·|x|6r=(-1)6·C6·|x|62r,得6-2r=0,r=3.∴T3+1=(-1)3·C36=-20.思考讨论
(1)求(1+x+x2+x3)(1-x)7的展开式中x4的系数;(2)求(x+4x-4)4的展开式中的常数项;
(3)求(1+x)3+(1+x)4+…+(1+x)50的展开式中x3的系数.解:(1)原式=1=14.(2)(x+4x1x41x4(1-x)7=(1-x4)(1-x)6,展开式中x4的系数为(-1)4C6-
-4)=4(x24x4)x44=
(2x)x48442·,展开式中的常数项为C8(-1)4=1120.(3)方法一:原式=(1x)[(1x)3481](1x)1=
(1x)51(1x)x3.4展开式中x3的系数为C51.方法二:原展开式中x3的系数为
3333343434C33+C4+C5+…+C50=C4+C4+…+C50=C5+C5+…+C50=…=C51.评述:把所给式子转化为二项展开式形式是解决此类问题的关键.n【例3】 设an=1+q+q2+…+qn1(n∈N*,q≠±1),An=C1na1+C2na2+…+Cnan.(1)用q和n表示An;(2)(理)当-3
=11q2nn12n[(C1n+C2] n+…+Cn)-(Cnq+Cnq+…+Cnq)=11q{(2n-1)-[(1+q)n-1]} =11q[2n-(1+q)n].(2)An2n=11q[1-(1q2)n].因为-3
●闯关训练 夯实基础
1.一串装饰彩灯由灯泡串联而成,每串有20个灯泡,只要有一只灯泡坏了,整串灯泡就不亮,则因灯泡损坏致使一串彩灯不亮的可能性的种数为
A.20
B.219 C.220 D.220-1 2020解析:C120+C220+…+C20=2-1.答案:D 2.(2004年福建,文9)已知(x-是
A.28
-
ax)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和B.38
-
C.1或38
-2r
D.1或28
rr解析:Tr1=C8·x8r·(-ax1)r=(-a)rC8·x8
.令8-2r=0,∴r=4.4∴(-a)4C8=1120.∴a=±2.当a=2时,令x=1,则(1-2)8=1.当a=-2时,令x=-1,则(-1-2)8=38.答案:C 3.(2004年全国Ⅳ,13)(x-1x)8展开式中x5的系数为_____________.解析:设展开式的第r+1项为Tr1=Cx令8-3r2r88-r
·(-
1x)=(-1)Cx
rr
r883r2.2=5得r=2时,x5的系数为(-1)2·C8=28.答案:28 4.(2004年湖南,理15)若(x3+
x321x)n的展开式中的常数项为84,则n=_____________.92解析:Tr1=C(x)令3n-92rn3n-r·(x)=Cn·x
rr3nr.r=0,∴2n=3r.∴n必为3的倍数,r为偶数.6试验可知n=9,r=6时,Crn=C9=84.答案:9 5.已知(xlgx+1)n展开式中,末三项的二项式系数和等于22,二项式系数最大项为20000,求x的值.21解:由题意Cn+Cn+Cnnnn=22,10即C2n+Cn+Cn=22,∴n=6.∴第4项的二项式系数最大.lgx∴C3)3=20000,即x3lgx=1000.6(x∴x=10或x=110.培养能力
6.若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:(1)a1+a2+a3+…+a11;(2)a0+a2+a4+…+a10.解:(1)(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.令x=1,得 a0+a1+a2+…+a11=-26,又a0=1,所以a1+a2+…+a11=-26-1=-65.(2)再令x=-1,得
a0-a1+a2-a3+…-a11=0.①+②得a0+a2+…+a10=1①
②
(-26+0)=-32.评述:在解决此类奇数项系数的和、偶数项系数的和的问题中常用赋值法,令其中的字母等于1或-1.7.在二项式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项.(1)求它是第几项;(2)求ab的范围.-
-
(12-r)+nrrr解:(1)设Tr1=C12(axm)12r·(bxn)r=C12a12rbrxm
为常数项,则有m(12-r)+nr=0,即m(12-r)-2mr=0,∴r=4,它是第5项.(2)∵第5项又是系数最大的项,43C12a8b4≥C12a9b3,①
∴有 45C12a8b4≥C12a7b5.②
由①得121110943294851a8b4≥12111032aba9b3,∵a>0,b>0,∴由②得ab b≥a,即≤ab≤
94.≥85,∴≤94.8.在二项式(x+24x)n的展开式中,前三项的系数成等差数列,求展开式中的有理项.分析:根据题意列出前三项系数关系式,先确定n,再分别求出相应的有理项.解:前三项系数为C0n,12C1n,1410C2n,由已知Cn=Cn+
142
C2n,即n-9n+8=0,解得n=8或n=1(舍去).Tr1=C(x)∵4-3r4r88-r(24x)=C·-r
r812r·x
43r4.∈Z且0≤r≤8,r∈Z,358∴r=0,r=4,r=8.∴展开式中x的有理项为T1=x4,T5=评述:展开式中有理项的特点是字母x的指数4-探究创新
9.有点难度哟!求证:2
1256 x2.-
3r4∈Z即可,而不需要指数4-
3r4∈N.1n)n
1n)n=1+1+C2n×
12!1n2+C3n×
1n3+…+Cnn×
1nn=2+
12!×+13!×n(n1)(n2)n3+…+×
n(n1)21n1n
13!
+14!+…+1n!
1n1[1()]22112n
=3-()n1
111n22n+C3n×
1n3+…+Cnn×1nn>2.所以2
1.在使用通项公式Tr1=Crnanrbr时,要注意:(1)通项公式是表示第r+1项,而不是第r项.(2)展开式中第r+1项的二项式系数Cn与第r+1项的系数不同.(3)通项公式中含有a,b,n,r,Tr1五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题,这类问题一般是利用通项公式,把问题归纳为解方程(或方程组).这里必须注意n是正整数,r是非负整数且r≤n.2.证明组合恒等式常用赋值法.●教师下载中心
r教学点睛
1.要正确理解二项式定理,准确地写出二项式的展开式.2.要注意区分项的系数与项的二项式系数.3.要注意二项式定理在近似计算及证明整除性中的应用.4.通项公式及其应用是二项式定理的基本问题,要熟练掌握.拓展题例
【例题】 求(a-2b-3c)10的展开式中含a3b4c3项的系数.解:(a-2b-3c)10=(a-2b-3c)(a-2b-3c)…(a-2b-3c),从10个括号中任取3个括号,从中取a;再从
34剩余7个括号中任取4个括号,从中取-2b;最后从剩余的3个括号中取-3c,得含a3b4c3的项为C10a3C7·(-2b)***2(-3)abc.所以含abc项的系数为-C10C7×16×27.C33(-3c)=C10C7C3
第4篇:二项式定理二项式定理的应用教案
排列、组合、二项式定理·二项式定理的应用·教案
教学目标
1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问题等.
2.渗透类比与联想的思想方法,能运用这个思想处理问题. 3.培养学生运算能力,分析能力和综合能力. 教学重点与难点
数学是一门工具,学数学的目的就是为了应用.怎样建立起要解决的问题与数学知识之间的联系(如一个近似计算问题与二项式定理有没有联系,怎样联系),是这节课的难点,也是重点所在.
教学过程设计
师:我们已经学习了二项式定理及二项式系数,请大家用6分时间完成以下三道题:
(1)在(1-x3)(1+x)10的展开式中,x5的系数是多少?(2)求(1+x-x2)6展开式中含x5的项.
(全体学生参加笔试练习)
6分钟后,用投影仪公布以上三题的解答:
(1)原式=(1+x)10-x3(1+x)10,可知x5的系数是(1+x)
(2)原式=[1+(x-x2)]6=1+6(x-x2)+15(x-x2)2+20(x-x2)3+15(x-x2)4+6(x-x2)5+(x-x2)6.
其中含x5的项为:20·3x5+15(-4)x5+6x5=6x5.
师:解(1),(2)两题运用了变换和化归思想,第(2)题把三项式化为二项式,创造了使用二项式定理的条件.
第(3)题的解法是根据恒等式的概念,a,b取任何数时,等式都成立.根据习题结构特征选择a,b的取值.这种用概念解题的思想经常使用.
下面我们看二项式定理的一些应用.
师:请同学们想一想,例1怎样解?
生甲:从结构上观察,则与练习的第(3)题有相似之处,只是组合数的系数成等比数列,是否根据二项式定理令a=1,b=3,即可得到证明.
师:请同学们根据生甲所讲,写出证明.(找一位同学板演)
证明:在(a+b)n的展开式中令a=1,b=3得:
师:显然,适当选取a,b之值是解这一类题的关键,再看练习题. 练习
生乙:这题与例1类比有共同点,仍是组合数的运算,不同点是缺
我考虑如能用二项式定理解,应对原题做以下变换:
师:分析得很透彻.这种敢想、会想精神是每位同学都要培养的.首先是敢字,不要一见题目有些生疏就采取放弃态度;要敢于分析,才能善于分析,将来才敢于创新,善于创新.
请大家把解题过程写在笔记本上.(教师请一名同学板演)
在(a+b)6的展开式中令a=1,b=3,得
师:解题过程从“在(a+b)6的展开式中令 a=1,b=3”写起就可以了.希望同学们再接再励,完成下个练习.
练习
师:大家议论一下,这道题能用二项式定理来解吗?
生丙:初步观察,与上节课我们学刁的:“在(a+b)n的展开式
解决.我们注意到组合数代数和的值为余弦值或正弦值,又注意到正项
„)或r=4m+1(m=0,1,2,„),负项出现在r=4m+2(m=0,1,2,„)或r=4m+3(m=0,1,2,„),而虚数单位i有以下性质:
i4m=1,i4m+1=i,i4m+2=-1,i4m+3=-i(m∈Z). 于是想在(a+b)n的展开式中令a=1,b=i.
师:分析得有道理,请同学们按生丙同学的意见进行演算.(教师找一位同学板演)
证明:设i是虚数单位,在(a+b)n的展开式中令a=1,b=i中得:
另一方面,又有
由此得到
根据复数相等定义,有
师:认真分析习题的结构,运用类比与联想的思想方法,可以帮助我们找到解题的思路,下面我们研究二项式定理在数字计算方面的应用.
例2 计算:1.9975(精确到0.001).
生丁:这道题若用二项式定理计算,必须把1.997看作1+0.997,这样,1.9975=(1+0.997)5.
师:计算简单吗?
生戊:把1.9975化为(2-0.003)5,再展开,由于精确到0.001,不必各项都计算.
师:按生戊所谈的方法,大家在自己的笔记本上计算一下.(教师找一位同学板演)解:1.9975=(2-0.003)5
=25-5×24×0.003+10×23×0.0032-10×22×0.003+„
由于|T6|<|T5|<|T4|≈1.08×10-6,则|T4|+T5+T6|<0.000004. 所以1.9975≈32-0.24+0.000 72≈31.761. 师:1996年全国高考有这样一道应用题:(用投影仪示出,老师读题)
某地现有耕地10 000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?
稍候,教师问:
谁想出解法了,请讲一讲.
生己:设该地区现有人口为P人,粮食单产为M吨/公顷,耕地平均每年至多只能减少x公顷.
十年后耕地亩数:104-10x,十年后总产量:M×(1+22%)(104-10x). 十年后人口:P×(1+1%)10,依题意可以得到不等式
师:实际计算时,会遇到(1+0.01)10的计算问题,请全体同学在笔记本上迅速计算出来.
(教师请一同学板演)
师:真迅速啊!请同学们课下把这道高考题完成.(答案:按规划该地区耕地平均每年至多只能减少4公顷)现在,我们再讨论一个新的问题.
例3 如果今天是星期一,那么对于任意自然数n,经过23n+3+7n+5天后的那一天是星期几?
生庚:先将此题转化为数学问题,即本题实际上寻求对于任意自然数n,23n+3+7n+5被7除的余数.
受近似计算题目启发,23n+3=8n+1=(7+1)n+1,这样可以运用
数,7n也是7的倍数,最后余数是1加上5,是6了. 师:请同学们在笔记本上完成此题的解答(教师请一名同学板演)
解:由于23n+3+7n+5=8n+1+7n+5=(7+1)n+1+7n+5
则 23n+3+7n+5被7除所得余数为6 所以对于任意自然数n,经过23n+3+7n+5后的一天是星期日.
师:请每位同学在笔记本上完成这样一个习题:7777-1能被19整除吗?(教师在教室内巡视,3分钟后找学生到黑板板演)解:7777-1=(76+1)77
由于76能被19整除,因此7777-1能被19整除. 师:请生辛谈谈他怎样想到这个解法的? 生辛:这是个幂的计算问题,可以用二项式定理解决.如果把7777改成(19+58)77,显然展开式中最后一项5877仍然不易判断是否能被19整除,于是我想到若7777-1能被38,或能被57,或能被76,或能被95整除,必能被19整除,而76与77只差1,故欲证7777-1被19整除,只需证(76+1)77被76整除.得到了以上的解法.
师:二项式定理解决的是乘方运算问题,因此幂的问题可以考虑二项式定理.下面我们解一些综合运用的习题
例4 求证:3n>2n-1(n+2)(n∈N,且n≥2). 师:仍然由同学先谈谈自己的想法.
生壬:我觉得这道题仍可以用二项式定理解,为了把左式与右式发生联系,将3换成2+1.
注意到:
① 2n+n·2n-1=2n-1(2+n)=2n-1(n+2); ② n≥2,右式至少三项;
这样,可以得到3n>2n-1(n+2)(n∈N,且n≥2).
生癸:根据题设条件有n∈N,且n≥2.用数学归纳法应当可以证明. 师:由于观察习题时思维起点不同,得到了习题不同解法,生×同学从乘方运算这点考虑,想到二项式定理,生×同学从题设条件n∈N考虑,想到数学归纳法.大家要养成习惯,每遇一题,从不同角度观察思考,得到更多解法,使我们思考问题更全面.
用二项式定理证明,生×同学已经讲清楚了证明过程,大家课下在笔记本上整理好,现在请同学们在笔记本上完成数学归纳法的证明.
(教师请一名同学板演)
证明:①当n=2时,左式=32=9,右式=22-1(2+2)=2×4=8,显然9>8.故不等式成立. ②假设n=k(k∈N且k≥2)时,不等式成立,即3k>2k-1(k+2),则当n=k+1时,由于 左式=3k+1=3·3k>3·2k-1(k+2)=3k·2k-1+3·2k. 右式=2(k+1)-1[(k+1)+2]=2k(k+3)=k·2k+3·2k,则 左式-右式=(3k·2k-1+3·2k)-(k·2k+3·2k)=3k·2k-1-2k·2k-1=k·2k-1>0.
所以 左式>有式.故当n=k+1时,不等式也成立. 由①,②不等式对n≥2,n∈N都成立.
师:为了培养综合能力,同学们在笔记本再演算一道习题: 设n∈N且n>1,求证:
(证明过程中可以运用公式:对n个正数a1,a2,„,an,总有
(教师在教室巡视,过2分钟找一名同学到黑板板演第(1)小题,再过3分钟找另一名同学板演第(2)小题)
师:哪位同学谈一谈此题应怎样分析?
生寅:第(1)小题左式与右式没有直接联系,应把它们分别转化,列前n项的和,由求和公式也能得到2n-1.因此得到证明. 第(2)小题左式与右式也没有直接联系.根据题目给出的公式要
师:根据式子的结构想有关知识和思考方法是分析问题的一种重要方法,要在解题实践中掌握.
本节课讨论了二项式定理主要应用,包括组合数的计算、近似计算、整除和求余数的计算以及与其他数学知识的综合应用.当然,二项式定理的运用不止这些,凡是涉及到乘方运算(指数是自然数或转化为自然数)都可能用到二项式定理.认真分析习题的结构,类比、联想、转化是重要的找到解题途径的思考方法,希望引起同学们的重视.
作业 1.课本习题:P253习题三十一:6,7,10; 2.课本习题:P256复习参考题九:15(2). 3.补充题:
课堂教学设计说明
1.开始练习起着承上启下的作用.这三题既复习了二项式定理及其性质,又考查了数学基本思想,如等价变换、未知转化已知,取特殊值,利于本节课进行,又培养了学生预习复习的学习习惯.
2.只有学生自己动手、动脑、动口才能真正把知识学到手,才能培养思维能力、计算能力、表达能力、分析问题解决问题能力.因此课堂教学一定以学生为主体,体现主体参与.
3.学生的回答不会像教案写的那样标准,教师要因势利导,帮助学生提高分析能力.
第5篇:数学 排列、组合、二项式定理基本原理 数学教案
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理. 教学设计示例
加法原理和乘法原理
教学目标
正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力. 教学重点和难点
重点:加法原理和乘法原理.
难点:加法原理和乘法原理的准确应用. 教学用具
投影仪. 教学过程设计
(一)引入新课
从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
今天我们先学习两个基本原理.
(二)讲授新课
1.介绍两个基本原理
先考虑下面的问题:
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.
这个问题可以http://jiaoan.cnkjz.com/>总结为下面的一个基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.
请大家再来考虑下面的问题(打出片子——问题2):
问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?
这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法. 2.浅释两个基本原理
两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.
比较两个基本原理,想一想,它们有什么区别?
两个基本原理的区别在于:一个与分类有关,一个与分步有关.
看下面的分析是否正确(打出片子——题1,题2):
题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个. 1~10中一共有N=4+2+1=7个合数.
题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?
第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.
题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.
从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.
(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)
进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.
也就是说:类类互斥,步步独立.
(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)
(三)应用举例
现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.
例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)
(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是 N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.
(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原
第6篇:高考数学全面突破 二项式定理
11.3二项式定理
考情分析
1.能用计数原理证明二项式定理.
2.会用二项式定理解决与二项展开式有关的简单问题.
基础知识
1.二项式定理
n1n-1n-rrn*(a+b)n=C0b+„+Crb+„+Cnna+Cnananb(n∈N)这个公式所表示的定理叫二项式定理,右边的多项式叫(a+b)n的二项展开式.
其中的系数Crn(r=0,1,„,n)
n-rrn-rr式中的Crb叫二项展开式的通项,用Tr+1表示,即通项Tr+1=Crb.nana
2.二项展开式形式上的特点
(1)项数为(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为(3)字母an逐项减1直到零;字母b幂排列,从第一项起,次数由零逐项增1直到n.-11(4)二项式的系数从Cn,一直到Cnn3.二项式系数的性质 -(1).(2)增减性与最大值: 二项式系数Ckn,当n+1k<2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;
n当n是偶数时,中间一项C2取得最大值;
n-1n+1当n是奇数时,中间两项C2,C2取得最大值.
012nn(3)各二项式系数和:Cn+Cn+Cn+„+Crn+„+Cn=2;
24135n-1C0.n+Cn+Cn+„=Cn+Cn+Cn+„=
2注意事项
n-rr1.运用二项式定理一定要牢记通项Tr+1=Crb,注意(a+b)n与(b+a)n虽然相na
同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项
展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指Cr而后n,者是字母外的部分.前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.
2.二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.
3.(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.
(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.
4.(1)对称性;
(2)增减性;
(3)各项二项式系数的和; 以上性质可通过观察杨辉三角进行归纳总结.
题型一 二项展开式中的特定项或特定项的系数
13【例1】已知(3x-)n的展开式中各项系数之和为256,则展开式中第7x
项的系数是()
B.2
4D.252 A.-24C.-252
答案:D
解析:令x=1可得各项系数之和为2n=256,则n=8,故展开式中第7项的26系数为C68×3×(-1)=252.a【变式1】若x-6展开式的常数项为60,则常数a的值为________. x
a6-r6-3r解析 二项式x6展开式的通项公式是Tr+1=Cr(a)rx-2r=Cr(-6x6xx
2a)r,当r=2时,Tr+1为常数项,即常数项是C26a,根据已知C6a=60,解得a
=4.答案 4
题型二 二项式定理中的赋值
【例2】已知(1+x)10=a0+a1(1-x)+a2(1-x)2+„+a10(1-x)10,则a8=
()
A.180
C.-
5答案:A
10-r解析:(1+x)10=[2-(1-x)]10其通项公式为:Tr+1=Cr(-1)r(1-x)r,a8102B.90 D.5
是r=8时,第9项的系数.
28所以a8=C8102(-1)=180.故选A.【变式2】 已知(1-2x)7=a0+a1x+a2x2+„+a7x7.求:(1)a1+a2+„+a7;(2)a1+a3+a5+a7;(3)a0+a2+a4+a6;(4)|a0|+|a1|+|a2|+„+|a7|.解 令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1.①
令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.②
(1)∵a0=C07=1,∴a1+a2+a3+„+a7=-2.-1-37(2)(①-②)÷2,得a1+a3+a5+a7==-1 094.2
-1+37(3)(①+②)÷2,得a0+a2+a4+a6=2=1 093.(4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零,而a1,a3,a5,a7小于零,∴|a0|+|a1|+|a2|+„+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7)=1 093-(-1 094)=2 187.题型三 二项式的和与积
2【例3】二项式(x+x)(1-x)4的展开式中x的系数是________.
答案:
32解析:利用分步计数原理与组合数公式,符合题目要求的项有x(-x)4和
x·14,求和后可得3x,即展开式中x的系数为3.2【变式3】xx-x7的展开式中,x4的系数是________(用数字作答).
272737解析 原问题等价于求x-x的展开式中x的系数,x-x的通项Tr+1=Cr7x
-r2r7-2r-x=(-2)rCr,令7-2r=3得r=2,∴x3的系数为(-2)2C27x7=84,即
xx-2x7的展开式中x4的系数为84.答案 84
重难点突破
【例4】已知(1-2x)7=a0+a1x+a2x2+„+a7x7.求:(1)a1+a2+„+a7;
(2)a1+a3+a5+a7;
(3)a0+a2+a4+a6;
(4)|a0|+|a1|+|a2|+„+|a7|.解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1,令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.(1)∵a0=C07=1,∴a1+a2+a3+„+a7=-2.(2)(①-②)÷2,-1-37得a1+a3+a5+a7=2=-1094.(3)(①+②)÷2,-1+37得a0+a2+a4+a6=2=1093.(4)∵(1-2x)7展开式中,a0,a2,a4,a6大于零,而a1,a3,a5,a7小于零,∴|a0|+|a1|+|a2|+„+|a7|
=(a0+a2+a4+a6)-(a1+a3+a5+a7). ∴由(2)、(3)即可得其值为2187.① ②
代数教案--二项式定理(2)王新敞二项式定理教学内容及教学目标:二项式定理是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和......
10.5 二项式定理●知识梳理1.二项展开式的通项公式是解决与二项式定理有关问题的基础.2.二项展开式的性质是解题的关键.3.利用二项式展开式可以证明整除性问题,讨论项的有关......
高三数学《二项式定理》说课稿在教学工作者开展教学活动前,就不得不需要编写说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。那么写说课稿需要注意哪些问题呢?以下是小......
刀豆文库小编为你整合推荐6篇高三数学《二项式定理》说课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
二项式定理及数学归纳法【真题体验】1.(2012·苏北四市调研)已知an=(12)n(n∈N*)(1)若an=a+2(a,b∈Z),求证:a是奇数;(2)求证:对于任意n∈N*都存在正整数k,使得an=k-1k.12233nn证明 (1)由......
