二次函数教学计划(优质13篇)

2023-12-01 09:28:19 教学计划 下载本文

无论是工作上的计划,还是生活中的计划,都需要我们认真思考和制定。在执行过程中,根据需要适时调整计划,保持灵活性。注意,这些范文只是作为参考,具体的计划需根据自身情况进行调整和定制。

二次函数教学计划篇一

从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。

完成这节课后,静下心来准备写个教学反思。重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!

对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。

对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的。

二次函数教学计划篇二

一、从学生原有的认知结构提出问题

这节课,我们来学习二次函数的三种表达方式。

二、师生共同研究形成概念

1、用函数表达式表示

做一做书本p56矩形的周长与边长、面积的关系

鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。

比较全面、完整、简单地表示出变量之间的关系

2、用表格表示

做一做书本p56填表

由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

表格表示可以清楚、直接地表示出变量之间的数值对应关系

3、用图象表示

议一议书本p56议一议

关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

可以直观地表示出函数的变化过程和变化趋势

做一做书本p57

4、三种方法对比

议一议书本p58议一议

函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

二次函数教学计划篇三

让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。

:各种隐含条件的挖掘。

:引导发现法。

(一)诊断补偿,情景引入:

(先让学生复习,然后提问,并做进一步诊断)。

(二)问题导航,探究释疑:

(三)精讲提炼,揭示本质:

分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。

解由题意,得点b的坐标为(0。8,-2。4),

又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。

例2、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);

(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);

(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);

(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。

分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。

解这个方程组,得a=2,b=-1。

(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。

(3)因为抛物线与x轴交于点m(-3,0)、(5,0),

所以设二此函数的关系式为。

又由于抛物线与y轴交于点(0,3),可以得到解得。

(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。

(四)题组训练,拓展迁移:

1、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);

(2)已知抛物线的顶点为(-1,2),且过点(2,1);

(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。

2、二次函数图象的对称轴是x=-1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。

(五)交流评价,深化知识:

确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。

(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。

(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。

本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),

(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。

二次函数教学计划篇四

学生的发展是新课程标准实施的出发点和回宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。“二次函数的图像的性质”这一课题,通过对传统教法的改进,以全新的自主的学习方式让学生接受题目挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、***、***的科研氛围,让学生感受“二次函数的性质”的探究发现过程,体验研究过程,体验成功的快乐。

1、利用计算机制作动画(让学观察抛物线的形成过程)培养学生以运动变化的观点来观察题目、分析题目、解决题目的意识。

2、会用描点法画出二次函数的图像,能通过图像熟悉二次函数的性质。

3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。

4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生熟悉“事物都是相互联系、相互制约”的辩证唯物主义观点。

5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。

1、通过主动操纵、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的爱好,唤起好奇心与求知欲,点燃起学生聪明的火花,使学生积极思维,勇于探索,主动获取知识。

2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。

1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、回纳概括能力,综合培养学生的思维能力及创新能力。

2、培养学生运用运动变化的观点来分析、探讨题目的意识。

通过研究、、、这几类函数图像,得出平移规律,并总结概括出二次函数的性质。

运用题目解决理论指导教学,力求体现“自主学习、动手实践、合作交流”的教学理念。

计算机、网络。

(1)画出图像经过了哪些过程?

(2)列表时自变量取了几个数?哪几个数?

(3)找几位同学展示一下自己画的图像。

(4)想一想,列表时如何公道选值?以什么数为中心?当x取互为相反数的值时,y的值如何?让学生结合老师夸大的作图留意事项,再画函数的图图像。

然后老师用画函数工具作出的图像。由学生观察作比较。

教会学生用画函数工具画图,让学生比较两种画法,弄清学生自己所画的`不足之处.

用几何画板呈现已画好的函数图象,让学生观察图象上的点变化的过程,确认函数值随着自变量的变化而变化的规律.

老师作总结.

(3)抛物线与对称轴的交点叫做抛物线的顶点,那么二次函数的顶点坐标是;。

(4)在对称轴的左边随着的增大而减小;在对称轴的右边随着的增大而增大.

二次函数教学计划篇五

1、上课一开始,我就注重对所学过的平面直角坐标系的有关知识、平面内如何确定点的坐标、以及各象限内点的坐标特征和关于y轴对称点的坐标特征的复习。使学生在画二次函数图象时描点找得很快、很准确。在讲解抛物线的概念时,出示了同学们很感兴趣的姚明投篮的照片,激发了学生的学习兴趣。为了得出a不同对抛物线图象和性质的影响,在学生画完三个图象后,教师采用“问题导学”式教学方法,设置问题情境,引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数y=ax2的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的图象,培养了学生动手动脑的习惯和综合分析归纳的能力。

2、小组合作学习,发现其中的规律。鼓励学生相互交流自己的想法,并说明理由。如在画出图象后,提问学生“我们可以从图中观察到什么”。渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。在合作学习中,也培养了他们善于与人交流,合作,肯于负责任的良好个性品质。

3、教师适时地总结、深化,提高认识水平。教师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。如这几个基本函数的学习上一节课经历了从实例抽象概括出函数概念,本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。

4、课堂教学中充分体现了教师和学生的“双主作用”,其中“问题导学”的教学模式起了重要作用。只有教师创造性的教,学生才能创造性地学,一旦学生的学习活动充满创造性的时候,学习过程便充满美的魅力,成为学生积极进取、自我完善的过程。

不足:对y=-x2的读法,教师读的不规范,没有注意小的细节。在总结二次函数性质时,对于开口宽度,我在备课时用a的绝对值来表示的,a为负数时与a为正数时正好相反,一个学生说对了,但不是老师要的答案,我当时没有多想,就说他说的不对。忽略了不同的说法。另外老师提出问题后,给学生去分析、归纳、总结的时间还不够,因此本节课中教师有包办现象。

二次函数教学计划篇六

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

二、立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

二次函数教学计划篇七

这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。

整个教学过程主要分为三部分:

第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让学生复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。

第二部分是学习探究,探求活动前先让一名学生读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a0时函数y=ax2的性质。探究活动二是独立画出函数y=ax2的图象,然后是自主探讨当a0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

本课的优点主要包括:

1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。

本课的不足之处表现在:

1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。

3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a0的情况下能得到a越大开口越小,a0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。只有真正把自主、探究、合作的`学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

二次函数教学计划篇八

1、学习图像之前,让学生正确画平面直角坐标系,准备不同颜色的彩笔。

2、每节课基本都是学生自己画图、比较、讨论、总结。本节画出的图像比较,和上节学习的图像比较,和小组其他同学比较,看形状、看开口、看对称轴、看顶点有什么相同点和不同的地方,尽可能自己总结函数的图像。

3、小组展示成果,其他小组听、评和补充。总结出顶点形式的图像性质。

4、画出函数的图像,根据图像确定ahk的数值。

5、注意二次函数的对称性,步骤是列表、描点、连线。取值时从对称轴开始取,注意左右对称取值。

二次函数教学计划篇九

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

二次函数教学计划篇十

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(1)y=x2的图象的图象有什么特点。(答:具有对称性。)。

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)。

二次函数教学计划篇十一

1、教材所处的地位:

2、教学目的要求:

(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

3、教学重点和难点。

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:

重点:

(2)能够表示简单变量之间的二次函数关系.。

难点:

具体的分析、确定实际问题中函数关系式。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

1、教法研究。

教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、学法研究。

初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。

3、教学方式。

(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。

(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

1、温故知新—揭示课题。

由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。

2、自我尝试、合作探究—探求新知。

通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。

3、小试身手—循序渐进。

本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。

4、课堂回眸—归纳提高。

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

5、课堂检测—测评反馈。

共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。

6、作业布置。

作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。

通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。

二次函数教学计划篇十二

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

二次函数教学计划篇十三

学习目标:

1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。

2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。

3、通过解决用二次函数所表示的问题,培养学生的运用能力。

学习重点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。

学习难点:

能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。

学习过程:

一、学前准备。

函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:

x(千克)00。511。522。53。

y(元)0123456。

二、探究活动。

(一)合作探究:

交流完成:

(1)一边长为xcm,则另一边长为cm,所以面积为:用函数表达式表示:=________________________________。

(2)表格表示:

123456789。

10—。

(3)画出图象。

(二)议一议。

(1)在上述问题中,自变量x的取值范围是什么?

(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。

点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。

(1)因为x是边长,所以x应取数,即x0,又另一边长(10—x)也应大于,即10—x0,所以x10,这两个条件应该同时满足,所以x的取值范围是。

(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=—时,函数y有最大值y最大=。当x=时,长方形的面积最大,最大面积是25cm2。

可以通过观察图象得知。也可以代入顶点坐标公式中求得。。

(三)做一做:学生独立思考完成p62,p63的函数表达式,表格,图象问题。

(1)用函数表达式表示:y=________。

(2)用表格表示:

(3)用图象表示:

三、学习体会。

本节课你有哪些收获?你还有哪些疑问?

四、自我测试。

1、把长1。6米的铁丝围成长方形abcd,设宽为x(m),面积为y(m2)。则当最大时,所取的值是()。

a0。5b0。4c0。3d0。6。

2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。

【本文地址:http://www.daodoc.com/zuowen/16855003.html】

二次函数教学计划

二次函数教学计划时光在流逝,从不停歇,又将迎来新的工作,新的挑战,立即行动起来写一份计划吧。那么你真正懂得怎么制定计划吗?以下是小编精心整理的二次函数教学计划,希望对大家有......

《二次函数》数学教学计划

刀豆文库小编为你整合推荐4篇《二次函数》数学教学计划,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《二次函数》数学教学计划

《二次函数》数学教学计划学习内容:1、二次函数的概念;2、二次函数的图象;3、二次函数的性质。学习要求:1、理解二次函数的`概念,会用描点法画出二次函数的图象,理解二次函数与抛......

二次函数单元教学计划

刀豆文库小编为你整合推荐8篇二次函数单元教学计划,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

二次函数

2.二次函数定义__________________________________________________二次函数(1)导学案一.教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。......

《二次函数教学计划(优质13篇).docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
二次函数教学计划(优质13篇)
点击下载文档
相关专题
[教学计划]相关推荐
[教学计划]热门文章
下载全文