《相似三角形的性质》教学设计与反思_相似三角形的性质教案

2020-02-27 教学设计 下载本文

《相似三角形的性质》教学设计与反思由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“相似三角形的性质教案”。

《相似三角形的性质》教学设计与反思

一、教材分析:

1、三维目标:

(1)知识目标:相似多边形的周长比、面积比与相似比的关系及应用。

(2)能力目标:经历探索相似多边形的性质的过程,培养学生的探索能力,利用相似多边形的性质解决实际问题,训练学生的应用能力。

(3)德育渗透:学生通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处;应用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识。

2、教学重、难点: 重点:(1)相似多边形的周长比、面积比与相似比的关系的推导及运用。(2)用相似多边形的性质解决实际问题。

难点:相似多边形性质的灵活运用,及对“相似多边形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“面积比求相似比”的理解。

二、教学方法。

为了充分调动学生学习的积极性,使学生变被动学习为主动愉快的学习,使几何课上得有趣、生动和高效,教学中从简单到复杂,也就是从三角形到多边形的一个过程。教材并没有对结论进行严格的证明,教师在教学时应根据实际情况适当补充结论的证明方法,引导好学生从直观发现向逻辑推理过渡,培养学生的逻辑推理能力的同时,也为后续学习打下基础。在教学中,启发、诱导应贯穿于始终。

三、学法指导。

采用类比、转化的方法,以多种手段辅助教学,引导学生预习教材内容,养成良好的自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。

四、教学过程的设计。

1、引入新课:

首先请同学们利用相似三角形的性质解决以下问题: 已知ΔABC∽ΔA B C ,且AB=3,BC=4,CA=5, A B =6.求ΔABC 与ΔA B C 的相似比,周长比,面积比?

说明:本节课通过相似的计算问题入手,既复习了相似三角形的基本性质,又使学生直接感受周长,面积问题与相似图形的关系,学生不一定能完成周长比面积比,问题可以先放置。但可以让学生清楚本节课所研究的问题,为后续学习做好铺垫。

2、自主预习:

自学:课本149页至151页 自学指导:(1)回顾相似三角形的性质

(2)利用等比性质推三角形周长比和相似比的关系。利用相似三角形的性质进一步推相似三角形面积比和相似比的关系。

(3)将四边形转化为三角形,解决有关相似多边形的周长比和面积比与相似比的关系

3、合作解疑:(1)已知ΔABC∽ΔA B C,相似比为。① 请你写出图中所有成比例的线段。② ΔABC与ΔA B C 的周长比是多少?你是怎样做的? ③ ΔABC的面积如何表示?ΔA B C 的面积呢?ΔABC与ΔA B C 的面积比是多少?与同伴交流。说明:该问题是上节课的引例,学生比较熟悉,设计目的在于引导学生对旧知问题进行联系,不断思考问题的解决方式,渗透转化的思想方法。教学说明:

教学时要注意引导学生如何将边长与周长联系,如何求面积。计算的基本方法:利用等比性质通过边长比求面积比,渗透了数形结合的思想;作出高求面积,突出转化思想。这些思想方法的教学既是为题目本身服务的,又是必须向学生渗透的。(2)课本中议一议

说明:进一步研究相似四边形的情况。利用这种方法将四边形换成五边形、六边形等其他多边形,那么也有相同的结论。

由此可知:相似多边形的周长比等于相似比,面积比等于相似比的平方。

教学说明:本例的证明过程比较复杂,通过前面的铺垫学生对证明步骤应该不陌生,特别是利用等比性质将边长统一成周长的证明步骤体现了数学的严谨性。教学时并不要求学生掌握,知道如何得到的就行了。

4、反馈检测:

(1)课本随堂练习1,知识技能1题,2题。

(2)如图所示是某城市地图的一部分,比例尺为1:100000.①设法求出图上环形路的总长度,并由此求出环形快速路的实际长度。②估计环形快速路所围成的区域的面积,你是怎样做的?与同伴交流。

解:①量出图上距离约为20cm,则实际长度约为20千米。②图上区域围成的面积约为23.7 cm ².根据相似多边形面积的比等于相似比1:100000的平方,则实际区域的面积约为23.7平方千米。

5、作业设计:

课本习题4.11 必作题:知识技能3,4题 选择题:153页6题

6、回顾反思:

(1)总结归纳相似多边形的性质?

(2)在学习相似形的性质时我们运用过哪些数学方法? 说明:两个问题概括了与相似形性质有关的大部分内容,教学的落脚点就是使学生会合理准确地使用这些性质,这就要求学生必须对知识的变化过程非常清楚、同时对每部分的关系心中有数。

五、教学设计与反思。

这节课,我们主要在如何把传授知识与培养能力有机地结合起来作了些尝试,具体地说,表现在:

(1)针对初中数学的特点,结合本节课的内容,制定了明确的教学目标。

(2)相似多边形的性质重点强调“用”,它是为计算和探究其它知识服务的,本课设计着重培养学生的应用意识和数学建模思想,简单地说就是使学生明确什么时候用相似比,什么时候用边之比,什么时候用角相等。这样能更好地培养学生的思维能力和实践能力,也使学生从中领悟到数学来源于实践,又反过来作用于实践的辨证唯物主义观点。

(3)教学程序的设计,充分体现了教师为主导,学生为主体的教学原则,让学生人人动手、动脑,积极参与教学活动。同时,注意发挥练习题的作用,加强对解题方法和过程的指导,使传授知识和培养能力融为一体。

《相似三角形性质》教学反思

刀豆文库小编为你整合推荐6篇《相似三角形性质》教学反思,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

相似三角形性质1教学反思

相似三角形性质1教学反思......

《相似三角形性质》教学反思3篇

《相似三角形性质》教学反思3篇引导语:作为一位优秀的老师,教学是我们的任务之一,教学反思能很好的记录下我们的课堂经验,那要怎么写好教学反思呢?以下是小编为大家收集的《相似......

相似三角形性质1教学反思

相似三角形性质1教学反思《相似三角形的性质》是北师大版九年级上册第四章第七小节内容。本节课的教学重点是探索相似三角形的性质并能用相似三角形的性质解决简单的实际问......

相似三角形性质(一)教学反思

类似三角形的本质是第四版第四版第四版第四章第四章内容的第四章。本课的重点是探索类似三角形的本质,并解决类似三角形属性的简单实际问题。事实上,在理解类似三角形的基本性......

《《相似三角形的性质》教学设计与反思.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
《相似三角形的性质》教学设计与反思
点击下载文档
相关专题 相似三角形的性质教案 教学设计 角形 性质 相似三角形的性质教案 教学设计 角形 性质
[教学设计]相关推荐
[教学设计]热门文章
下载全文