思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明_初中数学思想方法教学
思想方法在初中数学中的作用,在教学中如何渗透转化、分类讨论思想和数形结合思想的,请各举一教学片段说明由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“初中数学思想方法教学”。
数学思想方法是数学基础知识的重要组成部分,它反映了数学的本质特征,是对数学概念、原理和方法的本质认识,是分析和处理数学问题的指导思想。下面就分类讨论、数形结合数学思想进行探讨。
一.分类讨论思想
在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。
分类评论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。
分类讨论应遵循的原则:分类的对象是确定的,标准是统一的,不遗漏,不重复,分层次,不越级讨论。
当某个问题有多种情况出现或推导结果不唯一确定时,常运用分类讨论,再加以集中归纳。例如:对|a|要去掉绝对值符号,应讨论绝对值内部式子的符号,要分三种情况去掉绝对值符号。几何中也存在着一些数学和位置关系的分类讨论。
例1:甲、乙两人骑自行车,同时从相距75km的两地相向而行,甲的速度为15km/n,乙的速度为10km/n,经过多少小时甲、乙两人相距25km?
简析:甲、乙两人相遇前后都会相距25km。分两种情况解答。
例2:在同一图形内,画出∠AOB=60°,∠COB=50°,OD是∠AOB的平分线,OE是∠COB的平分线,并求出∠DOE的度数。简析:分∠COB在∠AOB的内部和外部两种情形总图。
二。数形结合思想
数形结合思想是指看到图形的一些特征可以想到数学式子中相应的反映,是看到数学式子的特征就能联想到在图形上相应的几何表现。如教材引入数轴后,就为数形结合思想奠定了基础。如有理数的大小比较,相反数和绝对位的几何意义,列方程解应用题的画图分析等,这种抽象与形象的结合,能使学生的思维得到训练。
数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式。
纵观多年来的中考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
例1:如图所示:比较a,-a,b,-b的大小
简析:在数轴上指出-a,-b两个数表示的点,四数大小关系就一目了 然。
例2:有一十字路口,甲从路口出发向南直行,乙从路口以西1500米处向东直行,已知甲、乙同时出发,10分钟后两人第一次距十字路口的距离相等,40分钟后两人再次距十字路口距离相等,求甲、乙两人的速度。
简析:画出“十字”图,分析表示出两人在10分钟、40分钟时的位置,由图分析从而列出方程组。
总之,在数学教学中,切实把握好上述几个典型的数学思想方法,同时注重渗透的过程,依据课本内容和学生的认识水平,有计划有步骤地渗透,使其成为由知识转化为能力的纽带,成为提高学生的学习效率和数学能力的法宝。
在数学教学中渗透数形结合思想在数学教学中,教师如果能灵活地借助数形结合思想,会将数学问题化难为易,帮助学生理解数学问题。那么,如何在初中数学教学中挖掘数形结合思想并适时......
在数学教学中渗透数学建模思想,利用数型结合法解决实际问题邹城市石墙中学 王保顺 2012年7月16日 11:06数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复......
“转化思想”片段教学设计以及在数学教学中渗透这些教学思想SXGP055
1、课题是“圆的面积” 六年级上册2、教学片段:尝试转化,推导公式 (1).确定“转化”的策略。师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了......
数学源于生活,又高于生活,要想把数学学好,就需要把它回归到生活中去,这样才能让学生对它产生兴趣,提高学习的效率。学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐......
一、了解《大纲》要求,把握教学方法所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数......
