锐角三角函数正弦说课稿
第1篇:锐角三角函数正弦说课稿
锐角三角函数正弦说课稿
《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。根据新课标的理念,对于本节课,以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。
一、教材的地位和作用
1、教材分析
本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从学生的年龄特征和认知特征来看:
九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
从学生已具备的知识和技能来看:
九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础。
从心理特征来看:九年级学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
从学生有待于提高的知识和技能来看:
学生要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。
3、教学重点、难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我认为本节课的重点为:理解正弦函数意义,并会求锐角的正弦值。
难点为:根据锐角的正弦值及一边,求直角三角形的其它边长。
二、教学目标分析:
新课标指出,教学目标应从知识技能、数学思考、问题解决、情感态度等四个方面阐述,而这四维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识技能为主线,渗透情感态度,并把前面两者通过数学思考充分体现在问题解决中。借此结合以上教材分析,将四个目标进行整合,确定本节课的教学目标为:
1. 理解锐角正弦的意义,并会求锐角的正弦值;
2 掌握根据锐角的正弦值及直角三角形的一边,求直角三角形的其它边长的方法;
3 经历锐角正弦的意义探索的过程,培养学生 观察分析、类比归纳的探究问题的能力;
4 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法和学法分析
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的学情情况,本节课我采用“三动五自主”的教学模式,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式,在教师的指道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
本节课的教法采用的是情境引导和自学教学法,在教学过程中,通过适宜的问题情境引发新的认知冲突;建立知识间的联系。教师通过引导、指导、反馈、评价,不断激发学生对问题的好奇心,使其在积极的自主活动中主动参与概念的建构过程,并运用数学知识解决实际问题,享受数学学习带来的乐趣。
本节课的学习方法采用自主探究法与合作交流法相结合。本节课数学活动贯穿始终,既有学生自主探究的,也有小组合作交流的,旨在让学生从自主探究中发展,从合作交流中提高。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课主要安排以下教学环节:
(一)自学提纲
1、 已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB
已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC
设计意图:建构注意主张教学应从学生已有的知识体系出发,相似的三角形性质是本节课深入研究锐角正弦的认知基础,这样设计有利于引导学生顺利地进入学习情境。
2、 创设情境,提出问题
利用多媒体播放意大利比萨斜塔图片,然后老师问:比萨斜塔中条件和要探究的问题:“你能根据问题背景画出直角三角形并且利用边求出斜塔的倾斜角吗?”这就是今天我们要学习锐角三角函数(板书课题)
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(二)合作交流
1、阅读课本P74问题与思考 (要求学生独立思考后小组内合作探究)
结论:直角三角形中,30°角的对边与斜边的比值 。
2、阅读课本P75思考,并求值
结论:直角三角形中,45°角的对边与斜边的比值 。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流 等活动,引导学生归纳。
3、阅读课本P75探究 。
问:锐角A度数一定时,不管直角三角形的大小如何,它的对边与斜边的比有什么关系?你能解释吗?
4、正弦函数定义:在Rt△ABC中,∠C=900,把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=BC/AB
对定义的几点说明:
1、sinA是一个完整的'符号,表示∠A的正弦习惯上省略“∠”的符号.
2、本章我们只研究锐角的正弦。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生引入到下一环节。
(三)自主展示(强化训练,巩固双基)
1、(例1课本P76)已知:在Rt△ABC中,∠C=90°,根据图中数据
求sinA和sinB
2、课本77页练习
3、判断对错(学生口答)
(1)若锐角∠A=∠B,则sinA=sinB ( )
(2)sin60°=30°+sin30° ( )
4、将Rt△ABC各边扩大100倍,则sinA的值( )
A.扩大100倍 B.缩小100倍 C.不变 D.不确定
5、平面直角坐标系中点P(3,- 4),OP与x轴的夹角为∠1,求sin∠1的值。
6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的长。
设计意图:例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(四)自主评价(小结归纳,拓展深化)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是那个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?
(五)自主拓展(提高升华)
1、课本习题28.1第1、2、题。(只做与正弦函数有关的部分);
2、选做题:已知:在Rt△ABC中,∠C=900,sinA=1/3,周长为60,求:斜边AB的长.
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,为了使课堂效益达到最佳状态,我设计以下问题加以追问:
1、sinA能为负吗?
2、比较sin45°和sin30°的大小。
设计要求:(1)先学生独立思考后小组内探究
(2)各组交流展示探究结果,并且组内或各组之间自主评价.
设计意图:
(1)有一定难度需要学生进行合作探究,有利于培养学生善于反思的好习惯.
(2)学生通过互评自评,可以使学生全面了解自己的学习过程,感受自己的成长和进步,同时促进学生对学习及时进行反思,为教师全面了解学生的学习状况,改进教学,实施因材施教提供重要依据。
教学反思
1.本教学设计以直角三角形为主线,力求体现生活化课堂的理念,让学生在经历“问题情境——形成概念——应用拓展——反思提高”的基本过程中,体验知识间的内在联系,让学生感受探究的乐趣,使学生在学中思,在思中学。
2.在教学过程中,重视过程,深化理解,通过学生的主动探究来体现他们的主体地位,教师是通过对学生参与学习的启发、调整、激励来体现自己的引导作用,对学生的主体意识和合作交流的能力起着积极作用。
3.正弦是生活中应用较广泛的三角函数。因而在本节课的设计中力求贴近生活。又从意大利比萨斜塔提炼出了数学问题,让学生体会学数学、用数学的乐趣。
第2篇:《锐角三角函数》说课稿
《锐角三角函数》说课稿
元城初中 李先龙
一.知识技能:
1、通过复习进一步理解锐角三角形函数的概念,能熟练地应用sinA,cosA,tanA表示直角三角形中的两边的比,熟记30°,45°,60°角的各三角函数的数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角。
2.理解直角三角形中边角之间的关系,会运用勾股定理,锐角三角函数的有关知识来解某些简单的实际问题,从而进一步把数和形结合起来,培养应用数学知识的意识。2.过程与方法:
通过本节知识的复习,力图让学生感受数形结合思想,体会数形结合的数学方法。深刻理解用数学方法解决实际问题的重要性和必要性. 3.情感态度价值观:
在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中感受探索与创造,体验成功的喜悦。激发学生兴趣,感受数学之美。
二、教学重点、难点
1.重点:会用锐角三角函数的有关知识来解决某些简单的实际问题 2.难点: 勾股定理及锐角三角形函数的综合运用。
三、说教法学法:
1.师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合九年级学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2.数学是一门培养人的思维、发展人的思维的重要学科,在教学中,我们要学生“知其然”,更要“知其所以然”,在处理教材上,我采用数形结合的方法,把问题用图形表示出来。
3.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
4.学法:
“授人以鱼,不如授人以渔”。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自主发现等学习能力,增强学生的综合素质,从而达到复习的最终目标。教学中,倡导学生主动参与教学实践活动,以独立思考和合作交流的形式发现·分析和解决问题,给予学生足够的时间完成知识的构建。
四、教学过程
1.请学生明确一下本节课的复习目标 2.知识点回顾和对应的练习
(一)、锐角三角函数
1、三角函数的定义:在Rt△ABC中,∠C=90°,则 sinA=()cosA=()tanA=()
2、同角三角函数关系:(利用定义可得)
平方关系:sin2A+cos2A=()商数关系:tanA=()
3、互余的两锐角的三角函数关系: sinA=cos()cosA=sin()tanA tan(90°-A)=()
概念是解决问题的很重要的手段,应用三角函数时,一定要让学生搞清是哪两条边的比,记住要画出图形,利用数形结合的思想解题 练习一:课件
第一组练习旨在巩固学生对锐角三角函数的概念的理解。独立完成后,在小组交流。练习二:课件出示
第二组练习旨在检查学生对特殊角的三角函数值的掌握情况。在学生独立计算、互相批阅后,由全对的同学再次介绍记特殊角的三角函数值的窍门,然后要求每人对自己掌握的不清晰的三角函数值当场强化记忆。
(三)、在Rt△ABC中,∠C=90°,边与角有下列关系:
(1)三边的关系:。
(2)两锐角的关系:∠A+∠B=。
(3)边和角之间的关系(两边一锐角): a= b= c= 练习三:略
第三组是有关解直角三角形的练习,题目设置以一个直角三角形到两个直角三角形为基础,要求做高的只在最后一题中体现。这里体现了非常重要的数学思想----转化的思想。
(四)实际问题中的有关概念:(查书理解)
(1)仰角、俯角(2)坡面、坡度、坡角、坡比。练习四:略
第四组练习是应用解直角三角形的知识解决实际问题。学生间辨析实际问题中专业名词特别是坡角、坡度的含义,正确掌握坡角、坡度的关系。交流解题后的体会:应用解直角三角形的知识解决实际问题的关键是把实际问题中量间的关系转化为直角三角形的边角关系。
3.测试环节,以四个小题作为检测。4. 本课小结
本章的重点是直角三角形中锐角三角函数的定义,特殊锐角的三角函数值,及互余两角的三角函数关系,运用这些知识解直角三角形的实际应用,既是重点也是难点
5、作业设计
课外作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。
第3篇:《锐角三角函数》说课稿
《锐角三角函数》说课稿
今天我说课的课题是《锐角三角函数》(第一课时),所选用的教材为人教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法和学法分析,教学过程分析四个方面加以说明。
一、教材的地位和作用
本节教材是人教版初中数学新教材九年级下第28章第一节内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础,也是高中进一步研究三角函数、反三角函数、三角方程的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2、学情分析
从学生的年龄特征和认知特征来看:
九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。
从学生已具备的知识和技能来看:
九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问
第4篇:锐角三角函数说课稿
《锐角三角函数复习课》说课稿
初三十班
赵景花
各位评委老师,大家好。今天我说课的课题是人教版九年级数学下册28章《锐角三角函数复习课》。对于本节课,我将从教材内容、学情、教学目标、教学方法和学法、教学准备、教学环节、作业、板书设计等几个方面加以说明。
一、教材内容分析
本节教材是人教版初中数学新教材九年级下第28章内容,是初中数学的重要内容之一。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础。因此,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。本节重点是对锐角三角函数知识中考考点进行全面的分析,掌握。这些知识点是学生必须掌握,能够拿到的分数的部分,保证每个学生不失分。
二、学情分析
九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。并且学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的
第5篇:锐角三角函数正弦和余弦的教学设计
锐角三角函数正弦和余弦的教学设计
教学目的
1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素,锐角三角函数(一) —— 初中数学第四册教案。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键
1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程
一、复习提问
1、什么叫直角三角形?
2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?
二、新授
1,让学生阅读教科书第一页上的插图和引例,然后回答问题:
(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)
(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)
(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的
第6篇:《锐角三角函数》教学计划
《锐角三角函数》教学计划
(一)引课
1 、请同学们回忆一下,以前测量旗杆高度的方法,并说明这些方法的理论依据是什么?(相似三角形对应边成比例)
2 、问题:如果观测的角是任意的锐角,能否求出旗杆的高度呢?要解决这个问题,只要学完三角函数这节内容,你们就可得到答案。
(二)新课
1、① Rt △ ABC 中,∠ C=90° ,各边名称是什么?一般用什么字母表示,学生回答,老师在图形中标明。
2 、在以上测量旗杆高度的各种方法中,那些量是改变的,哪些量是不变的,它们之间有何联系?
学生活动:
学生思考,分组讨论,并归纳出以下结论(如果学生有缺漏,教师可点拨,同时鼓励表扬):
(1)、在 Rt △ ABC 中,当∠ A 不变时,三角形的形状可以改变,即各边可改变大小,但任两边的比值不变。
(2)、当∠ A 取其他固定值时,任两边的比值也有唯一确定值与之对应。
3、三角函数定义:由∠ A 取每一确定值,∠ A 的对边与斜边的比值有唯一确定值与之对应,我们把这两个变量之间这种函数关系用符号 “Sin” 表示即: Sin
第7篇:人教课标版 九年级数学教案锐角三角函数——正弦
一、教学目标
1.通过探究使学生知道当直角三角形的锐角固定时,它的对边与用计算器求锐角三角函数值和根据三角函数值求锐角斜边的比值都固定(即正弦值不变)这一事实.
2.能根据正弦概念正确进行计算
3.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.
二、教学重点、难点
重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.
难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.
三、教学过程
(一)复习引入
操场里有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34º,并已知目高为1米.然后他很快就算出旗杆的高度了.
你想知道小明怎样算出的吗?
师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;
实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度
