分式方程练习题
第1篇:分式方程练习题
分式方程练习题
【知识要点】
1、分式的定义:_________________________________。
2、分式的___________________时有意义;_____________时值为零。(注意分式与分数的关系)
3、分式的基本性质:;
用字母表示为:
(其中)。(注意分式基本性质的应用,如改变分子、分母、分式本身的符号,化分子、分母的系数为整数等等)。
4、分式的约分:。(思考:公因式的确定方法)。
5、最简分式:____________________________________。
6、分式的通分:。
7、最简公分母:。
8、分式加减法法则:_____。(加减法的结果应化成)
9、分式乘除法则:。
10、分式混合运算的顺序:。
11、分式方程的定义:。
12、解分式方程的基本思想:____;如何实现:。
13、方程的增根:
。
14、解分式方程的步骤:
________________________________。
15、用分式方程解决实际问题的步骤:
【习题巩固】
一、填空:
1、当x时,分式有意义;当x时,分式无意义。
2、分式:当x______时分式的值为零。
3、的最简公分母是_________。
4、;;
5、;。
6、已知,则。
7、一件工作,甲单独做小时完成,乙单独做小时完成,则甲、乙合作小时完成。
8、若分式方程的一个解是,则。
9、当,时,计算。
10、若分式13-x的值为整数,则整数x=。
11、不改变分式的值,把下列各式的'分子、分母中的各项系数都化为整数:
①23x-32y56x+y=;②0.3a-2b-a+0.7b=。
12、已知x=1是方程的一个增根,则k=_______。
13、若分式的值为负数,则x的取值范围是__。
14、约分:①_______,②______。
15、一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要______________小时。
16、若关于x的分式方程无解,则m的值为__________。
17、若__________。
18、①;②。
19、如果=2,则=____________。
20、在等号成立时,右边填上适当的符号:=____________。
21、已知a+b=5,ab=3,则_______。
22、某工厂库存原材料x吨,原计划每天用a吨,若现在每天少用b吨,则可以多用天。
23、某商场降价销售一批服装,打8折后售价为120元,则原销售价是元。
24、已知,则B=_______。
25、甲、乙两人从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的________倍.
二、选择题
1、下列各式中,分式有()个
A、1个B、2个C、3个D、4个
2、如果把分式中的和都扩大3倍,那么分式的值()
A、扩大3倍B、缩小3倍C、缩小6倍D、不变
3、下列约分结果正确的是()
A、;B、;C、;D、
4、计算:,结果为()
A、1B、-1C、D、
5、某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()
A、B、
C、D、
6、下列说法正确的是()
(A)形如AB的式子叫分式(B)分母不等于零,分式有意义
(C)分式的值等于零,分式无意义(D)分子等于零,分式的值就等于零
7、与分式-x+yx+y相等的是()
(A)x+yx-y(B)x-yx+y(C)-x-yx+y(D)x+y-x-y
8、下列分式一定有意义的是()
(A)xx2+1(B)x+2x2(C)-xx2-2(D)x2x+3
9、下列各分式中,最简分式是()
A、B、C、D、
10、在一段坡路,小明骑自行车上坡的速度为每小时V1千米,下坡时的速度为每小时V2千米,则他在这段路上、下坡的平均速度是每小时()。
A、千米B、千米C、千米D无法确定
11、若把分式中的x和y都扩大3倍,那么分式的值()
A、扩大3倍B、不变C、缩小3倍D、缩小6倍
12、已知的值为()
A、B、C、2D、
13、若已知分式的值为0,则x-2的值为()
A、或-1B、或1C、-1D、1
14、已知,等于()
A、B、C、D、
三、计算题:
1、2、
四、解方程:
1、2、
五、先化简,再请你用喜爱的数代入求值:(-)÷.
六、列分式方程解应用题”
1、甲、乙两地相距19千米,某人从甲地出发出乙地,先步行7千米,然后改骑自行车,共用2小时到达乙地。已知这个人骑自行车的速度是步行速度的4倍。求步行速度和骑自行车的速度。
2、甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的,求步行和骑自行车的速度各是多少?
3、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。问原来规定修好这条公路需多长时间?
4、甲、乙两班学生植树,原计划6天完成任务,他们共同劳动了4天后,乙班另有任务调走,甲班又用6天才种完,求若甲、乙两班单独完成任务后各需多少天?
5、一条船往返于甲乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆流水行驶,已知船在静水中的速度为8km/h,平时逆水航行与顺水航行所用的时间比为2:1,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了9h.问甲乙两港相距多远?
七、解答题
1、若,且3x+2y-z=14,求x,y,z的值。
2、已知.试说明不论x在许可范围内取何值,y的值都不变.
3、(1)将甲种漆3g与乙种漆4g倒入一容器内搅匀,则甲种漆占混合漆的;如从这容器内又倒出5g漆,那么这5㎏漆中有甲种漆有g.
(2)小明到姑姑家吃早点时,表妹小红很淘气,她先从一杯豆浆中,取出一勺豆浆,倒入盛牛奶的杯子中搅匀,再从盛牛奶的杯子中取出一勺混合的牛奶和豆浆,倒入盛豆浆的杯子中.小明想:现在两个杯子中都有了牛奶和豆浆,究竟是豆浆杯子中的牛奶多,还是牛奶杯子中的豆浆多呢?(两个杯子原来的牛奶和豆浆一样多).现在来看小明的分析:
设混合前两个杯子中盛的牛奶和豆浆的体积相等,均为a,勺的容积为b.为便于理解,将混合前后的体积关系制成下表:
混合前的体积第一次混合后第二次混合后
豆浆牛奶豆浆牛奶豆浆牛奶
豆浆杯子a0a-b
牛奶杯子0ab
①将上面表格填完(表格中只需列出算式,无需化简).
②请通过计算判断:最后两个杯子中都有牛奶和豆浆,究竟是豆浆杯子中的牛奶多,还是牛奶杯子中的豆浆多呢?
第2篇:《分式方程》练习题
15.3分式方程(1)
4x1的值为0,x的值应取_____. x34x12.当x_____时,分式的值为1.
5xa13.要使得关于x的方程的解为正数,a的取值范围是(). x12x111 A.a> B.a
222|x|24.如果分式2的值为零,则x=().
xx61.要使得分式 A.±2 B.-2 C.+2 D.以上结论都不对 5.如果关于x的方程【聚集“中考”】 6.解方程:
2a1有增根,求a的值. x3x3x15x=6 xx17.为适应国民经济持续快速协调地发展,自2004•年4•月18日起,全国铁路实施第五次提速,提速后,火车由天津到上海的时间缩短了7.42小时,若天津到上海的路程为1 326千米,提速前火车的平均速度为x千米/时,提速后火车的平均速度为y千米/时,则x、y应满足的关系式是().
13267.42 13261326C.7.42xyA.xy 答案: 1.
B.yx13267.42
13261326D.7.42yx11 2.x=1 3.B 4.B 5.-2 6.x= 7.C 44
第3篇:分式方程练习题
分式方程练习题(2013中考)
1.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为________.
2.某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍.求第一组的人数.
3.2013年4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?
4.解方程:.
5.水源村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入村民植树活动,并且该环保组织植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.(1)全村每天植树多少亩?(2)如果全村植树每
