《小学数学与数学思想方法》优秀读后感
第1篇:《小学数学与数学思想方法》优秀读后感
《小学数学与数学思想方法》优秀读后感
当品读完一部作品后,相信你心中会有不少感想,让我们好好写份读后感,把你的收获和感想记录下来吧。那要怎么写好读后感呢?下面是小编整理的《小学数学与数学思想方法》优秀读后感,仅供参考,欢迎大家阅读。
《小学数学与数学思想方法》优秀读后感1
《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。这句话对于我们新教师来已经是烂熟于心,但对于这句话真正理解的少之又少,读了王永春老师的《小学数学思想与数学思想方法》之后,对这句话才有了真正的认识。“授人以鱼不如授人以渔”,对于学生而言,数学知识在其次,数学方法才是最重要的,在这本书中,王老师为我们总结了小学数学知识中蕴含的数学思想,这让我们在日常教学中可以结合所教知识很清楚地知道这些知识中蕴含了哪些数学思想方法,为我们的教学提供了指导和帮助。
这学期我任三年级数学,三年级上册中的主要思想有:第3单元“测量”中学习的长度单位:分米(dm)、毫米(mm)、千米(km)是符号化思想的应用;第7单元“长方形和正方形”中有些习题如本书中第25页的“案例2”应用了分类思想;第9单元“数学广角——集合”中学习的重复问题是集合思想的应用;第8单元“分数的初步认识”中学生用一张正方形白纸可以折出不同的形状表示它的1/4。在学生充分展示后,我们可以引导学生发现虽然形状、大小不同,但都是把一张正方形白纸平均成4份,每份是它的1/4。这个教学过程中有变中有不变的思想的应用。第8单元“分数的初步认识”中把一个圆形平均分,分的份数越多,分数越小,如果一直分下去,可以对应写出无限多个分数。
生活本身是一个巨大的数学课堂,生活中客观存在着大量有价值的数学现象。指导学生运用数学知识写日记,能促使学生主动地用数学的眼光去观察生活,去思考生活问题,让生活问题数学化。在教学中注重培养孩子运用数学的意识,增强学生运用知识解决实际问题的能力。由此可见,数学并不是靠老师教会的,而是在教师的指导下,靠学生自己学会的。在教学中教师要给学生创造情景、提供机会,给学生充足的.时间和空间,让学生主动探究新知,在探究中发现规律、归纳规律。因此,我们在课堂教学中,多留些时间给学生,让他们动手操作;多留些时间给学生,自己的意见;多留些时间给学生,让他们质疑问难。保证充分的时间和空间,让学生再课内交流、讨论、质疑。
这本书教给了我们一种教学理念,教会了我们一种教学方法。读书更是一种好的学习手段,它将带领我们不断更新、与时俱进,成为一名学生喜欢的、有专业素养的好老师。
《小学数学与数学思想方法》优秀读后感2
其实,这本书搁置在书架上已经许久了,因为里面概念性的东西比较多,所以读起来并不是那么趣味十足,之前读了几页,便没有再读下去。
之所以重读这本书,缘于这几天和学生一起收看《名师同步课堂》,在电视上做六年级数学直播课的是经验丰富的鲁向前老师,我发现他在讲课的时候,特别注重数学思想方法的渗透,在这方面正是我所欠缺的。
鲁老师在讲解求体积的解决问题时,提到了把一个体积转化成另一个体积,正方体熔铸成圆柱体,小石子放入水中水面升高等等,体现了恒等变形的思想。
鲁老师特别提到一种数学思想方法,由圆柱体积的求法猜想并实验证明圆锥体积的求法,体现了类比的思想方法。类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
经常说教方法比教知识重要,作为一名数学老师,需要系统的了解数学思想方法。所以我便想到了书架上的这本书。说实话,读这本书是有些枯燥的,而且如果你不动脑子去思考书中的问题的话,那你可能仅仅读的就是字了。
在《小学数学与数学思想方法》这本书的封皮上写着:数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。
这本书分上下两篇,上篇介绍各类思想方法,下篇介绍各类思想方法在每一册教材中的体现,这本书可以当成我们的一本工具书,在我们备课的时候,方便我们查阅。比如,在总结十以内的加减法或者乘法口诀的推导过程中,都体现了函数思想,作为老师的我们,不必让学生明确知道什么是函数思想,但是我们应该明白这里面体现了函数思想,并且有意识地向学生渗透思想方法,让学生在以后面对类似的问题,能够联想到这种思想方法去解决问题。
仅仅花费两三天的时间,匆匆读完了这本书,书中的一些思想方法或者内容,有些地方还不是太懂,需要慢慢去领悟,但是我知道,在以后备课,做教学设计时,一定要思考一个问题:这节课体现了哪些思想方法?我们应该向学生渗透哪些思想方法?为学生考虑的再长远一些。
第2篇:《小学数学与数学思想方法》读后感
《小学数学与数学思想方法》读后感
读完一本名著以后,大家心中一定有很多感想,何不写一篇读后感记录下呢?怎样写读后感才能避免写成“流水账”呢?以下是小编帮大家整理的《小学数学与数学思想方法》读后感,欢迎大家借鉴与参考,希望对大家有所帮助。
《小学数学与数学思想方法》读后感1
为了帮助小学数学教师转变数学教育观念,提高对数学思想方法的理解和运用水平,进而提高数学专业素养,本书主编王永春于出版了专著《小学数学与数学思想方法》,该书一经出版,便受到广大小学数学教师的欢迎,参与学习活动的老师们把自己的读书心得写出来,在教学中去实践自己的学习收获,主编王永春把这些鲜活的学习体会和宝贵的教学经验案例结集出版,形成了本书,让更多的老师分享通俗而深刻的理论解读和接地气的实践经验。
本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。
本书是《小学数学与数学思想方法》一书的读后感,是一线教师对数学思想方法的解读和教学案例的研究。因此本书的内容结构和目录与《小学数学与数学思想方法》的内容结构和目录是基本相对应的,其中第1章到第五章的.目录与《小学数学与数学思想方法》相对应,第六章教学案例部分,考虑到各年级案例分布不均,没有按照册数分节,把一、二年级分为第1节,三、四年级分为第二节,五年级分为第三节,六年级分为第四节。对学生来说,数学思想方法不同于一般的概念和技能,概念与技能通常可以通过短期的训练便能掌握,而数学思想方法则需要通过教师长期的渗透和影响才能够形成。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。
数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,而数学思想方法需要通过在教学中长期地渗透和影响才能够形成。古语云“泰山不让土壤,故能成其大;河海不择细流,故能就其深。”教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。希望数学思想方法的教学能够像春雨一样,滋润着学生的心田。
《小学数学与数学思想方法》读后感2
其实,这本书搁置在书架上已经许久了,因为里面概念性的东西比较多,所以读起来并不是那么趣味十足,之前读了几页,便没有再读下去。之所以重读这本书,缘于这几天和学生一起收看《名师同步课堂》,在电视上做六年级数学直播课的是经验丰富的鲁向前老师,我发现他在讲课的时候,特别注重数学思想方法的渗透,在这方面正是我所欠缺的。
鲁老师在讲解求体积的解决问题时,提到了把一个体积转化成另一个体积,正方体熔铸成圆柱体,小石子放入水中水面升高等等,体现了恒等变形的思想。
鲁老师特别提到一种数学思想方法,由圆柱体积的求法猜想并实验证明圆锥体积的求法,体现了类比的思想方法。类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
经常说教方法比教知识重要,作为一名数学老师,需要系统的了解数学思想方法。所以我便想到了书架上的这本书。说实话,读这本书是有些枯燥的,而且如果你不动脑子去思考书中的问题的话,那你可能仅仅读的就是字了。
在《小学数学与数学思想方法》这本书的封皮上写着:数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。教师应在每堂课的教学中适时、适当地体现思想方法的教学目标,使学生在潜移默化中日积月累,通过提高数学素养达到学好数学的目的。
这本书分上下两篇,上篇介绍各类思想方法,下篇介绍各类思想方法在每一册教材中的体现,这本书可以当成我们的一本工具书,在我们备课的时候,方便我们查阅。比如,在总结十以内的加减法或者乘法口诀的推导过程中,都体现了函数思想,作为老师的我们,不必让学生明确知道什么是函数思想,但是我们应该明白这里面体现了函数思想,并且有意识地向学生渗透思想方法,让学生在以后面对类似的问题,能够联想到这种思想方法去解决问题。
仅仅花费两三天的时间,匆匆读完了这本书,书中的一些思想方法或者内容,有些地方还不是太懂,需要慢慢去领悟,但是我知道,在以后备课,做教学设计时,一定要思考一个问题:这节课体现了哪些思想方法?我们应该向学生渗透哪些思想方法?为学生考虑的再长远一些。
第3篇:《小学数学与数学思想方法》读后感范文
《小学数学与数学思想方法》读后感范文
认真品味一部名著后,相信你心中会有不少感想,不妨坐下来好好写写读后感吧。但是读后感有什么要求呢?以下是小编收集整理的《小学数学与数学思想方法》读后感范文,希望能够帮助到大家。
《小学数学与数学思想方法》读后感1
为什么我看这个数学思维方法几页就觉得很受益,有触动。因为以前自己数学能学好感觉只是天然的选择,下意识的动作,在这里能找到原理,让你的行为有理论依据,更加明晰思维方法的重要性。自己就是受益于这些思维方法,但却没意识到,看了书才恍然大悟。很多习以为常,想当然的事情明白了这样设计的道理了。比如为啥设计小学五年级六年级。为什么三四年级、初中一年级会是槛。区别主要是抽象能力的发展不同。思维在低年级作用不是特别大。差距显现不出来。从作者的言外之意也可以看到数学思维方法是最重要的东西,但却不是课堂教学的常态目标,只是教学的附属品,渗透出来的,有人悟性高,捕获的多,发展的好。有人不敏感,攫取的少。差距就出来了。
但不管从数学教育从业者还是我们个人的经历来说,数学思维方
第4篇:《小学数学与数学思想方法》读后感(3篇)
【导语】刀豆文库的会员“feixia0071”为你整理了“《小学数学与数学思想方法》读后感(3篇)”范文,希望对你的学习、工作有参考借鉴作用。
《小学数学与数学思想方法》读后感1
为了帮助小学数学教师转变数学教育观念,提高对数学思想方法的理解和运用水平,进而提高数学专业素养,本书主编王永春于出版了专著《小学数学与数学思想方法》,该书一经出版,便受到广大小学数学教师的欢迎,参与学习活动的老师们把自己的读书心得写出来,在教学中去实践自己的学习收获,主编王永春把这些鲜活的学习体会和宝贵的教学经验案例结集出版,形成了本书,让更多的老师分享通俗而深刻的理论解读和接地气的实践经验。
本书作者王永春,作为人民教育出版社小学数学编辑室主任,长期从事小学数学教材的编写工作,致力于课程、教材的研究,对小学数学思想方法有深入的思考和探索。基于对提高教育质量、落实教育目标的强烈责任感,作者撰写了系列文章,就有关数学思想方法在小学教学中的应用作了专门的论述。在此基础上,形成了本书。
本书是《小学数学与数学思想方法》一书的读
第5篇:《小学数学与数学思想方法》的读后感
《小学数学与数学思想方法》的读后感
当看完一本著作后,大家对人生或者事物一定产生了许多感想,现在就让我们写一篇走心的读后感吧。那么读后感到底应该怎么写呢?下面是小编精心整理的《小学数学与数学思想方法》的读后感,欢迎阅读,希望大家能够喜欢。
《小学数学与数学思想方法》读后感1
《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。这句话对于我们新教师来已经是烂熟于心,但对于这句话真正理解的少之又少,读了王永春老师的《小学数学思想与数学思想方法》之后,对这句话才有了真正的认识。“授人以鱼不如授人以渔”,对于学生而言,数学知识在其次,数学方法才是最重要的,在这本书中,王老师为我们总结了小学数学知识中蕴含的数学思想,这让我们在日常教学中可以结合所教知识很清楚地知道这些知识中蕴含了哪些数学思想方法,为我们的教学提供了指导和帮助。
这学期我任三年级数学,三年级上册中的主要思想有:第3单元“测量”中学习的长度单位:分米(d
第6篇:《小学数学与数学思想方法》读后感(精选5篇)
《小学数学与数学思想方法》读后感(精选5篇)
当细细品完一本名著后,相信大家的收获肯定不少,这时候,最关键的读后感怎么能落下!是不是无从下笔、没有头绪?下面是小编帮大家整理的《小学数学与数学思想方法》读后感(精选5篇)500字,仅供参考,大家一起来看看吧。
《小学数学与数学思想方法》读后感1
《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。这句话对于我们新教师来已经是烂熟于心,但对于这句话真正理解的少之又少,读了王永春老师的《小学数学思想与数学思想方法》之后,对这句话才有了真正的认识。“授人以鱼不如授人以渔”,对于学生而言,数学知识在其次,数学方法才是最重要的,在这本书中,王老师为我们总结了小学数学知识中蕴含的数学思想,这让我们在日常教学中可以结合所教知识很清楚地知道这些知识中蕴含了哪些数学思想方法,为我们的教学提供了指导和帮助。
这学期我任三年级数学,三年级上册中的主要思想有:第3单元“测量”中学习的
第7篇:《小学数学与数学思想方法》读后感(精选6篇)
《小学数学与数学思想方法》读后感(精选6篇)
细细品味一本名著后,相信大家的收获肯定不少,此时需要认真地做好记录,写写读后感了。那么我们该怎么去写读后感呢?下面是小编整理的《小学数学与数学思想方法》读后感(精选6篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《小学数学与数学思想方法》读后感1
《新课程标准》在总目标中提出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学知识、基本技能、基本思想、基本活动经验。这句话对于我们新教师来已经是烂熟于心,但对于这句话真正理解的少之又少,读了王永春老师的《小学数学思想与数学思想方法》之后,对这句话才有了真正的认识。“授人以鱼不如授人以渔”,对于学生而言,数学知识在其次,数学方法才是最重要的,在这本书中,王老师为我们总结了小学数学知识中蕴含的数学思想,这让我们在日常教学中可以结合所教知识很清楚地知道这些知识中蕴含了哪些数学思想方法,为我们的教学提供了指导和帮助。
这学期我任三年级数学,三年级上册中的主要思想有:第3单元“测量”中
第8篇:数学思想方法
函数是数学的纲,力和运动的关系是物理的纲。而力和运动的关系是因变量和自变量的关系也就是函数关系,所以数理不分家。最常用到的函数是三角函数,而力学中的力的分解和力的合成都必须用到数学中的三角函数和坐标系。此外,三角函数的运用在圆周运动的相关题目中也较多,特别是天体运动题目或带电微粒在磁场或电磁场中的运动,这时就需要用反三角函数来表示一部分数值。
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。
高考试题主要从以下几个方面对数学思想方法进行考查:①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑方法:分
