《平面向量》说课稿

2023-02-17 08:01:30 精品范文 下载本文

第1篇:平面向量说课稿

平面向量说课稿

我说课的内容是《平面向量的实际背景及基本概念》的教学,所用的教材是人民教育出版社出版的普通高中课程标准实验教科书数学必修四,教学内容为第74页至76页.下面我从教材分析, 重点难点突破,教学方法和教学过程设计四个方面来说明我对这节课的教学设想.一 教材分析

1地位和作用

向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.2教学结构

课本在这一部分内容的教学为一课时,首先从实际例子出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相

等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将这样安排教学:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.3教学目标

根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.(2)能力训练目标: 培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点难点突破

由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进

行辨认,加深对向量的理解.三 教学方法

本节课我采用了“启发探究式”的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:(1)由教材的特点确立类比思维为教学的主线.从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.(2)由学生的特点确立自主探索式的学习方法

通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到学生思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.四 教学过程设计

Ⅰ知识引入阶段---提出学习课题,明确学习目标(1)创设情境——引入概念

数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等.这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣.(2)观察归纳——形成概念

由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就唯一确定.再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。(3)讨论研究——深化概念

在得到概念后进行归纳,深化,之后向学生提出以下三个问题: ①向量的要素是什么? ②向量之间能否比较大小? ③向量与数量的区别是什么? 同时指出这就是本节课我们要研究和学习的主题.Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念(1)总结反思——提高认识

方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.(2)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一道即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。下列命题正确的是()

A.a与b共线,b与c共线,则a与c也共线

B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点

C.向量a与b不共线,则a与b都是非零向量

D.有相同起点的两个非零向量不平行 III 知识应用阶段---分析解决问题,归纳解题方法(1)分析解决问题

先引导学生分析解决问题.包括向量的概念,:向量相等的概念.抓住相等向量概念的实质:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等.进而进行正确的辨认,直至最终解决问题.(2)归纳解题方法

主要引导学生归纳以下两个问题:①零向量的方向是任意的,它只与零向量相等;②两个向量只要它们的模相等,方向相同就是相等向量.一个向量只要不改变它的大小和方向,是可以任意平行移动的,即向量是自由的.Ⅳ 学习,小结阶段---归纳知识方法,布置课后作业

本阶段通过学习小结进行课堂教学的反馈,组织和指导学生归纳知识,技能,方法的一般规律,为后续学习打好基础.(1)知识方法小结 在知识层面上我首先引导学生回顾本节课的主要内容,提醒学生要抓住向量的本质:大小与方向,对它们进行类比,加深对每个概念的理解.在方法层面上我将带领学生回顾探索过程中用到的思维方法和数学方法如:类比,数形结合,等价转化等.(2)布置课后作业

整理课堂笔记,习题2.1第1,2,3题.

第2篇:平面向量

平面向量

一、知识梳理:

(1)本章要点梳理:

1.向量加法的几何意义:起点相同时适用平行四边形法则(对角线),首尾相接适用“蛇形法则”,1

特别注意:(ABAC)表示△ABC的边BC的中线向量.向量减法的几何意义:起点相同适

2用三角形法则,(终点连结而成的向量,指向被减向量),||表示A、B两点间的距离;以、为邻边的平行四边形的两条对角线分别表示向量+、(或).2.理解单位向量、平行向量、垂直向量的意义。与非零向量同向的单位向量a0,叫做的单位向量。而a0都与共线(与反向的单位向量为-a0.3.两向量所成的角指的是两向量方向所成的角;两向量数量积||||cos,;其中|b|cosa,b可视为向量在向量上的投影.4.向量运算中特别注意a|a|的应用.研究向量的模常常先转化为模平方再进行向量运算.另外,有关向量的运算也可以利用数形结合的方法来求解,有些题目就可以由作图得解.5.向量的坐标运算是高考中的热点内容,向量的坐标形式实质上是其分解形式xy的“简记”.其中i,j分别表示与x轴、y轴正方向同向的单位向量.6.利用向量求角时,要注意范围.两向量所成角的范围是[0,].特别注意:0不能等同于,所成角是锐角,因为当,同向时也满足0;同样的道理,0不能等同于,所成角是钝角,因为当a,b反向时也满足0

[例]l是过抛物线y22px(p0)焦点的直线,它与抛物线交于A、B两点,O是坐标原点,则△ABO是()A、锐角三角形;B、直角三角形;C、钝角三角形;D、不确定与P值有关.22

y22pxpp分析:由直线l过焦点F(,0),设其方程为xmy,联立得:,即:p22xmy2

y1y2p2=.则y2pmyp0,则y1y2p,又x1x22p2p4222223p

2OAOBx1x2y1y20,则AOB一定是钝角.选C.47.直线l的向量参数方程式:A、P、B三点共线 则OP(1t)OAtOB

8.关注向量运算与三角函数综合是高考中的常见题型.[例]已知向量a{2cosx,1},b{cosx,3sin2x},xR.设f(x)ab.(1)若f(x)13且x[,],求x的值;(2)若函数y2sin2x的图像按向量3

3c{m,n}(|m|

2)平移后得到函数yf(x)的图像,求实数m,n的值.2解析:(1)f(x)2cosx3sin2xcos2x13sin2x2sin(2x

6)1,易得x

4.(2)函数y2sin(2x

6)1是由函数y2sin2x的图像向左平移,再把1

2所得图像向上平移1个单位而得,所以m

二、易错、易混、易忘点梳理: 12,n1.【易错点1】涉及向量的有关概念、运算律的理解与应用,易产生概念性错误。

例1.下列命题:①()2()2||4 ②()() ③ |²|=||²||④若∥b,b∥c,则∥ ⑤∥,则存在唯一实数λ,使 ⑥若,且≠,则⑦设e1,e2是平面内两向量,则对于平面内任何一向量,都存在唯一一组实数x、y,使xe1ye2成立。⑧若|+|=|-|则²=0。⑨²=0,则=或=。其中真命题的个数为()

A.1B.2C.3D.3个以上 2解析:①正确。根据向量模的计算aaa判断。②错误,向量的数量积的运算不满足交换律,这是因为根据数量积和数乘的定义(ac)b表示和向量b共线的向量,同理(ab)c表示和向量c共线的向量,显然向量b和向量c不一定是共线向量,故(ab)c(ac)b不一定成立。③错误。应为abab④错误。注意零向量和任意向量平行,非零向量的平行性才具有传递性。⑤错误。应加条件“非零向量a”。⑥错误。向量不满足消去律。根据数量的几何意义,只需向量b和向量b在向量c方向的投影相等即可,作图易知满足条件的向量有无数多个。⑦错误。注意平面向量的基本定理的前提有向量e1,e2是不共线的向量即一组基底。⑧正确。条件表示以两向量为邻边的平行四边形的对角线相等,即四边形为矩形。故²=0。⑨错误。只需两向量垂

直即可。答案:B 【知识点归类点拔】在利用向量的有关概念及运算律判断或解题时,一定要明确概念或定理成立的前提条件和依据向量的运算律解答,要明确向量的运算和实数的运算的相同和不同之处。一般地已知a,b,с和实数λ,则向量的数量积满足下列运算律:①a²b=b²a(交换律)②(λa)²b=λ(a²b)=a²(λb)(数乘结合律)③(a+b)²с=a²с+b²с(分配律)说明:(1)一般地,(a²b)с≠a(b²с)(2)有如下常用性质:a=|a|,(a+b)(с+d)=a²с+a²d+b²с+b²d,(a+b)=a+2a²b+b

【练习】设a、b、c是任意的非零平面向量,且相互不共线,则①(a²b)c-(c²a)b=0②|a|-|b|

【易错点2】利用向量的加法、减法、数量积等运算的几何意义解题时,数形结合的意识不够,忽视隐含条件。

例2.四边形ABCD中,AB=a,BC=b,CD=с,DA=d,且a²b=b²с=с²d=d²a,试问四边形ABCD是什么图形?

【易错点分析】四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量,易忽视如下两点:(1)在四边形中,AB,BC,CD,DA是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系。

解:四边形ABCD是矩形,这是因为一方面:由a+b+с+d=0得a+b=-(с+d),即(a+b)=(с+d)即|a|+2a²b+|b|=|с|+2с²d+|d|由于a²b=с²d,∴|a|+|b|=|с|+|d|①同理有|a|+|d|=|с|+|b|②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD222222222222222222222

形ABCD是平行四边形.另一方面,由a²b=b²с,有b(a-с)=0,而由平行四边形ABCD可得a=-с,代入上式得b²(2a)=0即a²b=0,∴a⊥b也即AB⊥BC。综上所述,四边形ABCD是矩形.【知识点归类点拔】向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。基于这一点解决向量有关问题时要树立起数形结合,以形助数的解题思路。例如很多重要结论都可用这种思想直观得到:(1)向量形式的平行四边形定理:2(|a|+|b|)=|a-b|+|222a+b|2(2)向量形式的三角形不等式:||a|-|b||≤|a±b|≤|a|+|b|(试问:取等号的条件是什么?)等有用的结论。

【练习】(1)点O是ABC所在平面内的一点,满足OAOBOBOCOCOA,则点O是ABC的()

(A)三个内角的角平分线的交点(B)三条边的垂直平分线的交点

(C)三条中线的交点(D)三条高的交点

(2)ABC的外接圆的圆心为O,两条边上的高的交点为H,OHm(OAOBOC),则实数m =

答案:(1)D(2)m=

1【易错点3】忽视向量积定义中对两向量夹角的定义。例3.已知ABC中,a5,b8,c7,求BCCA.(答案:-20)

【知识点归类点拔】高中阶段涉及角的概念不少,在学习过程中要明确它们的概念及取值范围,如

0,1800,180直线的倾斜角的取值范围是,两向量的夹角的范围是,注意向量的夹角是

否为三角形内角。

【易错点4】向量数积性质的应用。

例4.已知a、b都是非零向量,且a + 3b与7a  5b垂直,a  4b与7a  2b垂直,求a与b的夹角。

解析:本题应依据两向量夹角公式树立整体求解的思想。答案: 60。

【知识点归类点拔】利用向量的数量积的重要性质结合向量的坐标运算可解决涉及长度、角度、垂直等解析几何、立体几何、代数等问题,要熟记并灵活应用如下性质:设a与b都是非零向量,①a与b的数量积的几何意义是向量a在向量b方向的单位向量正射影的数量②a⊥ba²b=0③a²a=|a|或|a|=aaa④cosθ=22ab ab

⑤|a²b|≤|a|²|b|

5【练习】(1)已知向量a(1,2),b(2,45,若(ab)c,则a与c的夹角为()

2C.120°D.150°答案:C(注意b2a)(2已知向量a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则()(A)a⊥e(B)a⊥(a-e)(C)e⊥(a-e)(D)(a+e)⊥(a-e)答案:C A.30°B.60°

【易错点5】向量与三角函数求值、运算的交汇 例

5、a(1cos,sin),b(1cos,sin),c(1,0),(0,),(,2),a与c的夹

角为θ1,b与c的夹角为θ2,且12,求sin的值.32【易错点分析】此题在解答过程中,学生要将向量的夹角运算与三角变换结合起来,注意在用已知角表示两组向量的夹角的过程中,易忽视角的范围而导致错误结论。

解析:a(2cos,2sincos)2cos(cos,sin),b(2sin2,2sincos)22222222222sin

2(sin

2,cos

2)(0,),(,2),(0,),(,),故有2222

22cosac2cos,,|a|2cos|b|2sincos112222|a||c|2cos

22sin2

bc2sin,0,因cos22222222|b||c|2sin

2112,,从而sinsin.22226262

【知识点归类点拔】当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性,向量是新课程新增内容,具体代数与几何形式的双重身份。它是新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与三角的交汇是当今高考命题的必然趋势。高考对三角的考查常常以向量知识为载体,结合向量的夹角、向量的垂直、向量的模或向量的运算来进行考查学生综合运用知识解决问题的能力。

【易错点6】向量与解三角形的交汇

→→→→例6.ΔABC内接于以O为圆心,1为半径的圆,且3OA+4OB+5OC=0。

→→→→→→①求数量积,OA²OB,OB²OC,OC²OA ;②求ΔABC的面积。

→→→【思维分析】第1由题意可知3OA、4OB、5OC三向量的模,故根据数量积的定义及运算律将一

向量移项平方即可。第2问据题意可将已知三角形分割成三个小三角形利用正弦理解答。

→→→→→→→→→→→2解析:①∵|OA|=|OB|=|OC|=1由3OA+4OB+5OC=0 得:3OA+4OB=-5OC两边平方得:9OA+

→→→2→2→→→→→→→4→→→24OA²OB+16OB=25OC∴OA²OB=0同理:由4OB+5OC=-3OA求得OB²OC=- 由3OA+5OC=-4OB

5→→3求得OA²OC=-5

1→→1443→→→→②由OA²OB=0,故s0AB= |OA||OB|= 由OB²OC=- 得cos∠BOC=-∴sin∠BOC=- ∴22555

1→→33341→→→由OC²OA=- 得cos∠COA=- ∴sin∠COA= ∴s0AC= |OCs0BC= |OB||OC|sin∠BOC=,210555

221326→||OA|sin∠COA= 即sABC=s0AB+s0AC+s0BC= + + =521055

【知识点归类点拔】本题考查了向量的模、向量的数量积的运算,用于表达三角形的内角、面积。

第3篇:《平面向量数量积》说课稿

《平面向量数量积》说课稿

一:说教材

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

二:说学习目标和要求

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的

未完,继续阅读 >

《《平面向量》说课稿.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
《平面向量》说课稿
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文