《随机事件的概率》说课稿

2023-04-17 07:13:36 精品范文 下载本文

第1篇:《随机事件的概率》说课稿

《随机事件的概率》说课稿

作为一名为他人授业解惑的教育工作者,往往需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。写说课稿需要注意哪些格式呢?以下是小编整理的《随机事件的概率》说课稿,仅供参考,欢迎大家阅读。

《随机事件的概率》说课稿1

教学目标

1、让学生理解必然事件、不可能事件、随机事件的概念;

2、让学生经历试验等活动会判断必然事件、不可能事件、随机事件。

3、培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。

重点难点

重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。

难点:必然事件、不可能事件、随机事件的区别与转化关系。

教学过程

3.1第一学时

教学活动

活动1

教学过程:

一、创设情境,导入新课:(摸出红球表示运气好)

1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。

2、教师再拿出事先准备好的另一只装的全部是白球的不透明箱盒子,让坐在教室右边部分的三四位同学摸球,而学生摸出的全部是白球,摸到白球的学生个个唉声叹气,叹自己运气怎么就不好呢。

师:真的是教室左边部分的同学运气好,右边部分的同学运气不好吗?我们一起来观察两个盒子里的秘密。

3、教师揭秘,分别展示两个不透明盒子里的球,学生观察第一个盒子里全部是红球,第二个盒子里全部是白球。

师:这个游戏公平吗?

生:不公平。

师:为什么不公平呢?请大家思考

生1:第一个盒子里装的全部是红球,必然摸到红球。第二个盒子里装的全部是白球,摸到红球显然是不可能的。

师:回答得非常好,请坐。

师:如果现在让大家来摸球,你们可以确定摸出的球是什么球吗?

生2:在第一个盒子里摸球,摸出的球肯定是红球,在第二个盒子里摸球,摸出的球肯定是白球。

概念:(1)在一定条件下,必然会发生的事件叫做必然事件。

(2)在一定条件下,不可能发生的事件叫做不可能事件。

师:怎样使游戏公平呢?

生:把球混装在一起。

4、教师将两箱子里的球混装在一个盒子里,让同学们摸出红球,结果学生有的摸出红球,有的摸出白球。

师:你们能事先预测摸出的球是什么球吗?

生:不能。

概念:(3)在一定条件下,可能发生也可能不发生的事件叫做随机事件。

学生阅读三个概念。

师:你们能举出一两个生活中的随机事件吗?

(学生有的说抽签,有的说投篮,有的说掷硬币,有的说掷骰子等)

师:下面我们就分别来做抽签游戏和掷骰子游戏。

二、抽签游戏,体验新知

问题1 5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:

(1)小军首先抽到的号共有几种可能?

(2)抽到的序号小于6吗?

(3)抽到的序号会是0吗?

(4)抽到的序号会是1吗?

学生阅读问题1后,强调本活动是小军一人首先抽签的重复试验.

1、活动准备:

(1)检验签的序号是否完整,签的形状、大小是否相同。

(2)观察每次抽签条件是否相同。

(3)在座每位同学记录每次抽签结果。

2、抽签活动:让四位学生扮演小军角色配合老师进行抽签演示试验,抽签的同学宣布抽签结果。

3、整理、分析数据

(1)试验的数据分别是什么?有多少个?

(2)这些数据的出现有规律吗?

(3)以上数据中,最小的序号是几号?最大的呢?

(4)每个序号出现的频数各是多少?序号1到5都出现了吗?

4、回答书中的问题,并判断以下三事件是什么事件:

(1)抽到的序号小于6。

(2)抽到的序号是0。

(3)抽到的序号是1。

三、掷骰子游戏,验证新知

问题2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分

别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,

(1)可能出现哪些点数?

(2)出现的点数大于0吗?

(3)出现的点数会是7吗?

(4)出现的点数会是4吗?

1、学生学生阅读问题2后,猜测以上问题的结果。并判断以下三事件是什么事件:

(1)出现的点数大于0。

(2)出现的点数是7。

(3)出现的点数是4。

2、掷骰子活动

(1)教师演示规范掷骰子的方法。(避免学生活动时骰子乱蹦,骰子转动的时间过长)

(2)学生分组,小组内每位同学都可掷骰子,但是必须记录每次掷的结果。(愿每个小组内的同学合作)

(3)小组内掷骰子活动。

(4)像问题1一样整理、分析数据

3、验证猜测结果的准确性。

四、抢答游戏,应用新知

教材P128练习

五、反思小结,回味新知

1 、这节课你学到了什么?

2、你体会到了什么?

3、最让你难忘的是什么

六、课后演练强化新知

作业:教科书P134页的习题25.1第1题。

活动2【测试】课堂测评

袋中只有5个红球,能摸到红球。

打开电视机,正在播动画片

袋中有3个红球,2个白球,能摸到白球。

将一小勺白糖放入水中,并用筷子不断搅拌,白糖溶解。

测量某天的最低气温,结果为-150℃

早晨的太阳一定从东方升起。

小红今年15岁,她一定在念初三。

任意掷一枚硬币,正面向上。

一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来,

砸在水泥地面上,没有摔破。

《随机事件的概率》说课稿2

一、教材分析

1、教材所处的地位和作用

就知识的应用价值上来看:概率是反映自然规律的基本模型。概率已经成为一个常用词汇,为人们做决策提供依据。

就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证关系,是培养学生应用意识和思维能力的良好载体。

2、重点:

①了解随机事件发生的不确定性和频率的稳定性;

②正确理解概率的意义。

难点:

①理解频率与概率的关系;

②正确理解概率的含义。

二、学情分析

1、学生心理特点

虽然高中学生有一定的抽象思维能力,但是概率的定义过于抽象,

学生较难理解。

2、学生已有的认知结构

(1)初中已经学习过随机事件,不可能事件,必然事件的`概念

(2)学生在日常生活中,对于概率可能有一些模糊的认识。

(3)学生思维比较灵活,有较强的动手操作能力和较好的实验基础。

3、动机和兴趣

概率与生活息息相关,这部分知识能够引起学生的兴趣。

三、教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:

1、知识与技能:

(1)由日常生活中的事件,理解必然事件、随机事件、不可能事件等概念。

(2)通过抛掷硬币实验,正确理解频率、概率概念,及其两者关系。

(3)利用概率知识,正确理解生活中的实际问题。

2、过程与方法:学生在课堂上经历试验、统计等活动过程,进一步发展合作交流的意识和能力、

3、情感、态度、价值观:

(1)通过试验,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力。

(2)通过教学,培养学生把实际问题与数学理论相结合的能力,提高学生的探究能力。

(3)强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神、

四、教学策略

为了突出重点,突破难点,从而实现教学目标。在教学过程中计划进行如下操作:

1、教学手段

(1)精心设计教学结构,使学生经历质疑——解惑——应用的体验探究过程。

(2)努力创设情境案例,吸引学生的注意力,激发学生的兴趣

(3)合理设计数学实验,通过动手操作,培养学生“做”数学的精神,享受“做”数学带来的成功喜悦。

(4)充分利用软件辅助教学,便于课堂操作和知识条理化,教学更加生动形象,保证学生的注意力始终集中在课堂上。

2、教学方法

本节课贯彻“教师为主导、学生为主体、思维为核心”的教学思想,采取了以建构主义理论为指导,着重于学生实验、探索研究的启发式教学方法,结合学生分组讨论、归纳的教学方法。

五、教学用具:计算机、硬币、学生生日调查表

六、教学程序及设计的七个环节

1、情境引入:引出本章的课题,让学生体验学习概率的必要性和重要性

用“班级有无同生日的问题”引入课题

设计这个引入有两个理由:

(1)学生非常重视生日,对这个问题充满兴趣;

(2)学生普遍有一个错误的认识:“班里有同生日的人”是个小概率事件

当认知到“50个人中有两人生日相同的概率可以高达96.5%,基本上的班级都会有生日相同的人”,与原有的认识存大很大的差距,充分感受到概率的神奇;

事先合理设计表格,现场调查班级生日情况,发现确实有同生日的人,充分调动班级气氛,从而极大的激发学生学习概率的兴趣。(万一没有生日相同的学生,解说即使发生的可能性高达96、5%,也还是存在不发生的可能),再让学生举生活、学习等各方面的例子,再结合章头图,学生会感知到概率无处不在,概率是有用的,数学也是有用的,认识到学习概率的重要性。

2、明确课题:让学生明确本节课研究重点是随机事件的概率

通过区分四个事件的差异,引出事件的分类,并总结不可能事件、必然事件和随机事件的概念,明确本节课研究的重点是随机事件的概率。

例1的设计意图:加深对事件的分类和概念的理解,通过对“事件B”条件的改变,强调结果是相对条件而言的;

练习1的设计意图:引入典故“守株待兔”,让学生用数学概率的知识来辨析这个典故,渗透数学的教育意义,也体现数学来源于生活。同时,学生会感知到:知道随机事件的概率的大小有利于我们做出正确的决策。

3、概念建构:寻求获得随机事件的概率的方法,并得出概率的概念,并对频率和概率作了对比和辨析

第一个步骤:引导学生用试验得到的频率去估计事件的概率

现场创设情景:学生现场“掰手腕“比试,引导学生感知到解决问题的最直接的方法就是试验。

第二个步骤:通过掷硬币试验,引出概率的定义,突破难点

(1)组织学生动手掷硬币。根据以往的实践为了追求比较好的试验效果,先对抛掷的方式作了一定的引导,保证试验的随机性,体现了教师为主导,学生为主体的一个教学理念。对于概念的理解,也会产生积极的意义。具体操作的环节如下:

严格按照书本的要求,让每位学生做10次抛掷硬币的实验,并将实验结果填入书本表格中。四个学生一组,将本组同学的实验结果统计好,填入表格中。充分利用excel软件辅助教学的强大功能,计算出各组频率并绘制出折线图。学生亲身体验到随机事件发生的不确定性,试验次数比较小时,频率是不稳定的,在汇总数据环节让学生观察表格,直观感知频率是不稳定的。

(2)通过计算机模拟试验,重复做大量的掷硬币试验,动态的让学生感知:每次试验频率是不确定的,但稳定在某个常数附近

(3)结合历史上数学家所做的大量独立重复试验,对比两张频率的折线图,得出结论,形成概率的统计定义。

这一段是本节内容的难点,需要把对数据、图表的直观印象转化为抽象的概率定义。而通过实验操作、观察图表、分组讨论、归纳总结,很好的突破了这一难点,并实现了通过抛掷硬币实验,正确理解频率、概率概念,及其两者关系。培养学生观察、动手和总结的能力,以及同学之间的团队精神这一教学目标。

4、概念深化:进一步明确频率与概率的区别与联系

我安排了两个练习

例2即时训练,设计意图是落实重点让学生熟练掌握用频率估计概率这一方法,强调频率的稳定性和概率的确定性;

练习2的设计意图是是为了说明每次试验的结果具有随机性,进一步提升本堂课的主题;

通过表格和图像两种语言,生动直观的让学生感觉到:

不同点:频率是随机的,在试验前不能确定;概率是确定的值,是客观存在的,与试验无关

联系:随着试验次数的增加,频率会稳定在一个常数附近,得到概率的估计值。

5、练习反馈

(1)练习3的设计意图:这个练习综合了本节课的重点,能很好的反馈落实情况,而且通过训练巩固了所学知识点

6、归纳小结

小结的作用是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结知识内容及研究方法,提高学生的反思、总结的意识和语言表达能力。同时我会补充帮助学生全面地理解,掌握新知识。特别地,在小结过程中会提出本节课的数学思想:实验、观察、归纳和总结。

2、课后探究

书本练习1

这个探究题的设计意图:一方面巩固本节课的内容,也为下节课的学习搭好桥梁、

七:板书

设计意图:合理、整洁的板书能够让学生对本节课内容结构更好的掌握

第2篇:随机事件的概率说课稿

一、教材分析

(一)本节教材的地位及前后联系

概率是高二数学课本(B)第11章。它既是排列组合的具体应用和延续。也是高三我们学习概率统计知识的基础。

《随机事件的概率》是这一章的第一小节,包括随机事件及其概率和等可能性事件的概率两点内容,按照《教学大纲》的要求,应该分5个课时完成,本节课是第1课时。

(二)教学目标

根据刚才的知识结构图和《教学大纲》的要求,我将本节课的教学目标分为这样三类。

知识目标、能力目标和德育目标。

(三)教学重点与难点

重点是理解随机事件概率的统计概念。难点是认识频率与概率的区别和联系。

二。教法分析

为了突出重点,顺利地完成教学目标。在教学方法上,依据本节课知识的特点,按照现代教育教学的要求,考虑到高二学生已经具有较强的抽象概括能力,加上我校是省优秀重点中学,学生基础较好,在长期的学习过程中,已经积累了一定的探究经验等具体学情。

本节课我选择以探究式教学法为主进行教学。三。教学手段

为了有效地突破难点,本节课借助多媒体进行辅助教学,教学地点选择在多媒体网络教室。四.教学过程

在教学过程中,如何贯彻素质教育的要求?圆满地完成教学任务?我的想法是:按照探究式教学法的核心思想,围绕概率定义产生的思维过程,从定义产生的必要性和合理性两方面不断设置问题,激发学生的探究欲望,让学生以研究者和探索者的身份,参与随机事件发生频率的统计规律的抽象概括过程,参与概率定义的过程。设计上力图体现从易到难、从具体到抽象等基本原则。在引导学生探究的过程中,尽量为他们提供思维策略上的指导。具体分五个阶段:

(一)设置情境,明确目标

为了营造一个良好的探究氛围,激发学生的学习热情,这里我利用摇奖来进行情境的设置。首先给出这个事件,并请学生任意写出一个号码,看其是否是中奖号码,接着播放一段摇奖录像,在学生的翘首期盼中,当场开奖。

(二)探索实践、建构知识

接下来,围绕这一探究目标组织探究过程,这就是第二个阶段探索实践、建构知识。我又准备分三个环节完成,首先让学生观察试验数据,——1—— 认识频率的偶然性,初步体会频率的统计规律。然后学生亲自动手试验,经历频率统计规律的抽象概括过程,认识其中蕴涵的必然性,最后通过给概率下定义,认识概率的客观性。这是本节课的主要过程。

(三)巩固检测,拓展知识

学习了新的概念后,接下来就是反馈巩固了,即第三阶段:为了检测学生对频率与概率的认识,我设计了这组判断题。

(四)总结提练、提高能力

为了让学生对本节课的学习内容从整体上有更好的把握。我引导学生从知识、方法和规律等角度进行归纳提练,揭示必然性与偶然性的辩证关系。这是探究过程的重要环节,是认识的升华。

(五)布置作业、延时探究

这一过程是探究活动在时间上的延续,是对课堂学习的必要补充。五。教学反馈

在教学中,我努力建立起学生、课本和教师三者之间的立体信息交互网络,从多方面采取调控措施,保证探究方向的正确性和探究过程的有效性。主要通过整合教材,精选素材,合理安排教学节奏,加强信息的针对性,并注意教师与学生,学生与学生以及人机之间的双向交流。六。板书设计

——2——

第3篇:随机事件与概率

第一章 随机事件与概率

教学要求

1.理解随机事件的概念,了随机试解验、样本空间的概念,掌握事件之间的关系与运算.

2.了解概率的各种定义,重点是古典概率的定义,掌握概率的基本性质并能运用性质进行概率计算.

3.理解条件概率的概念,乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.

4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.

5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,用二项概率计算有关事件的概率.

本章重点:随机事件的概率计算、条件概率。

本章难点:全概率公式、贝叶斯公式及其应用

第二章 一维型随机变量及其分布

教学要求

1.理解一维随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poion)分

布、均匀分布、几何分布、正态分布、指数分布、均匀分布及其应用. 2.会求一维随机变量及简单随机变量函数的概率分布.

3.掌握分布函数的概念,并会用来求随机变量函数的分布。

本章重点:常见随机变量的分布及其概率计算.

本章难点:常见随机变量的应用

第三章 多

未完,继续阅读 >

第4篇:随机事件的概率测试题

随机事件的概率测试题

一、选择题

1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ).

A. 必然事件 B.随机事件 C.不可能事件 D.无法确定

考查目的:考查随机事件的定义.

答案:B.

解析:正面向上恰有5次的事件可能发生也可能不发生,该事件为随机事件.

2.一个袋中有5个红球,2个白球,从中任意摸出3个,下列事件中是不可能事件的是( ).

A.3个都是红球 B.至少1个是红球 C.3个都是白球 D.至多1个是白球

考查目的:理解不可能事件的定义,不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件.

答案:C.

解析:由于袋中只有2个白球,故取出3个白球是不可能发生的.

3.某人连续抛掷一枚均匀的硬币240000次,则正面向上的次数在下列数据中最可能是( ).

A.12012 B.11012 C.13 D.14000

考查目的:考查概率的意义及利用概率知识解决实际问题的能力.

答案:A.

解析:抛掷一枚质地均匀的硬币一次,正面向上和反面向上的概率相同,都是0.5,当抛掷次数较大时,正面向

未完,继续阅读 >

第5篇:随机事件及其概率小结

随机事件及其概率小结

一、知识点网络图

随机事件及其概率样本空间、样本点、事件的定义事件的关系及运算事件的关系及运算(、=、、、-、互斥、对立)算律(重点:对偶率的灵合运用)统计定义、古典定义、几何定义、主观概率概率定义及性质性质:定义中三条基本性质5条性质(BA)P(AB)P(A)P(B)减法公式(一般情况)P(AB)P(A)P(AB)P(AB)P(A)P(B)(A,B互斥)加法公式P(AB)P(A)P(B)P(AB)(一般情况)(A,B独立)P(AB)P(A)P(B)乘法公式P(AB)P(A)P(B|A)(一般情况)L(A)概率的计算古典概率P(A)m/n,几何概率P(A)L()P(AB)条件概率P(B|A)P(A)全概公式P(A)P(Bi)P(A|Bi)i=1P(B)P(A|Bi)逆概公式P(Bi||A)

未完,继续阅读 >

《《随机事件的概率》说课稿.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
《随机事件的概率》说课稿
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文