《用正比例解决问题》教学设计

2023-05-24 07:13:54 精品范文 下载本文

第1篇:用正比例解决问题教学设计

用正比例解决问题教学设计

教学目标:

1、掌握用正比例的方法解答相关应用题。

2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

3、培养学生分析问题、解决问题的能力。

4、发展学生综合运用知识解决问题的能力。教学重点:掌握用正比例的方法解答应用题。

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

教学过程:

一、回忆旧知

判断下列每题中的两个量是不是成比例,成什么比例?(1)购买课本的单价一定,总价和数量。(成正比例)(2)差一定,减数与被减数。(不成比例)(3)速度一定,路程和时间。(成成比例)

(4)零件总数一定,生产的天数和每天生产的件数。(成反比例)看来同学们学得都很不错,下面我们就一起来学习今天的新知识吧!

二、激趣导入

1.师:同学们,我很想知道我们学校旗杆的高度有多少米,你会用什么办法来测量呢?(让学生说一说自己的想法)

2.师:其实我们有一种既科学又方便的测量方法,但需要同学们掌握好这节课的知识才能正确地测量出旗杆的高度,今天我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)

三、探索新知

师:先来研究这样一个问题。

1、出示例5题(小黑板出示)

张大妈家上个月用了8吨水,水费是28元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?

2、分析解答应用题。(1)请一位同学读一读题目。

(2)已知什么条件?这道题要求什么?(根据学生的回答板书如下)8吨水 10吨水

水费28元 水费?元(3)能不能用以前学过的方法解答?(4)让学生自己解答,边订正边板书:

3、激励引新

这些方法都合理,还可以有什么方法解答呢?

学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

四、探讨新知 1、提出问题。

师:请同学们结合教科书上的例题,讨论以下问题。(1)题目中相关联的两种量是()和()。(2)()一定,()和()成()比例关系。

2、学生自学例题后小组讨论、思考:(1)问题中有两种量?

(2)它们成什么比例关系?你是根据什么判断的?(3)根据这样的比例关系,你能列出等式吗?(4)你还有什么发现?

3、组间交流:小组代表把讨论结果在班内交流。

4、学生尝试解答后评价。(指明学生说,教师板书)解:设李奶奶家上个月的水费是X元。

28:8=X:10 8X=28×10 X=280÷8 X=35 答:李奶奶家上个月的水费是35元.5、怎样检验?把检验过程写出来。

6、概括总结。

(1)用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。(2)明确解题步骤。(板书)

用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。分析判断、找出列比例式所需的相等关系、设未知数列等式、求解、检验写答语。(一梳二判三设四解五检验)

五、巩固提高

1、基本练习

如果把这道题的第三问题改写成:“如果李奶奶家上个月的水费是16元,求李奶奶家用了多少吨水?”该怎样解答?

让学生解答改编后的题,集体订正。

小结:比较一下改编后的题和例5有什么联系和区别?

例5的条件和问题改编以后,题中成正比例的关系仍没有改变,解答的方法也没有改变,只是要用的水数为X吨,列出等式是:12.8∶8=16∶X为什么这样列式?

3、实践运用

汇报数据:刚才我们上课时提到怎样测量和计算旗杆的高度,下去后同学去们去测量旗杆的一些数据。并试用这些数据编一道正比例应用题。

2、教科书第61页做一做:让学生直接用比例知识解答。做完后,讨论并请同学说一说:你

第2篇:《用正比例解决问题》教学设计

《用正比例解决问题》教学设计

作为一名默默奉献的教育工作者,通常需要准备好一份教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么大家知道规范的教学设计是怎么写的吗?下面是小编帮大家整理的《用正比例解决问题》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

一、教学目标

(一)知识与技能

在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

(二)过程与方法

通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

(三)情感态度和价值观

主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

二、教学重难点

教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

教学难点:利用正比例的关系列出含有未知数的等式。

三、教学准备

课件。

四、教学过程

(一)复习回顾

1.说说正比例、反比例的相同点和不同点。

2.判断下列每题中的两个量是不是成比例,成什么比例?

(1)已知A÷B=C。

当A一定时,B和C()比例;

当B一定时,A和C()比例;

当C一定时,A和B()比例。

(2)购买课本的单价一定时,总价和数量的关系。

(3)总路程一定时,速度和时间的关系。

【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

(二)探究新知,培养能力

1.提出问题。

教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

课件出示教材第61页例5。

思考:题中告诉了我们哪些信息?要解决什么问题?

教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

2.解决问题。

(1)学生尝试解答。

(2)交流解答方法,并说说自己的想法。

教师:谁愿意来说一说你是怎么解决的?

预设1:

28÷8×10

=3.5×10

=35(元)

(先算出每吨水的价钱,再算出10吨水需要多少钱)

预设2:

10÷8×28

=1.25×28

=35(元)

(也可以先求出用水量的倍数关系,再求总价)

教师:谁和这位同学的方法一样?

【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的.学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

3.激励引新。

教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

课件出示以下问题,让学生思考和讨论:

(1)题目中相关联的两种量是()和( ),说说变化情况。

(2)()一定,()和()成()比例关系。

(3)用关系式表示是()。

(4)集体交流、反馈。

板书:

教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程)。

学生独立完成,教师巡视。

反馈学生解题情况。

解:设李奶奶家上个月的水费是x元。

28:8=x:10或()

8x=28×10

x=280÷8

x=35

答:李奶奶家上个月的水费是35元。

(6)将答案代入到比例式中进行检验。

教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

(7)学生交流,汇报。

【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

4.变式练习。

教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

(1)比较一下此题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,请学生说一说是怎样想的。

5.概括总结。

教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

学生讨论交流,汇报。

(1)分析找出题目中相关联的两种量。

(2)判断它们是否是正比例关系。

(3)根据正比例的意义列出比例。

(4)最后解比例。

(5)检验作答。

教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

(三)巩固练习

1.只列式不计算。

(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

(189:3=x:9)

(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

(x:3=6:4)

2.用正比例解决问题。

(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

(四)课堂小结,拓展延伸

同学们,谁来说说,上了这节课,你收获了什么?

【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

第3篇:用正比例解决问题教学设计

《用正比例解决问题》教学设计

一、教学目标

(一)知识与技能: 在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

(二)过程与方法 :通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

(三)情感态度和价值观 :主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归

一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

二、教学重难点

教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

教学难点:利用正比例的关系列出含有未知数的等式。

三、教学准备 课件。

四、教学过程

(一)复习回顾

1.说说正比例、反比例的相同点和不同点。

2.判断下列每

未完,继续阅读 >

第4篇:《用正比例解决问题》教学设计

《正比例应用题》教学设计

教学目标:通过学习使学生在熟练判断两种相关联的量是否成正比例的基础上,掌握用正比例知识解答应用题的方法和思路。从而培养学3.小结方法:1.审题找出一定(不变)量,判断另外两个量成不成正比例。2.,找准对应关系,.解:设出未知数X,列出比例式:3..解答,检验、作答。

三、二次尝试,深化理解。

生综合运用知识,分析问题,解决问题的能力

教学重点:掌握用正比例应用题的解题方法和思路。

教学难点:能正确判断成正比例的量,列比例式。课型:新授课 教学过程:

一、尝试准备,激趣导入。

1.判断下面每题中的两种量成什么比例关系?

(1)路程一定,速度和时间(2)单价一定,总价和数量(3)每小时耕地的公顷数一定,耕地的总公顷数和时间。(4)

全班学生做操,每行站的人数和站的行数。

2.激趣引入

(1)出示课本主题,让学生用以前学过的方法解答,交流解法。(2)谈话激趣

二、初步尝试,探究新知

1.学生自主尝试,用正比例的知识解答。要求自主探究,也可同桌合作,不会的自学课本.2.全体交流,教师讲解。

例题改编

未完,继续阅读 >

第5篇:用正比例解决问题教学设计

用正比例解决问题教学设计

泾源县城关一小

禹月香

一、教学内容:义务教育课程标准实验教科书六年级下册第61页例5

二、教学目标: 1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。让学生在成功解决生活中的实际问题中体会数学的价值。

三、教学重点:掌握用正比例的知识解决问题的步骤和方法。

四、教学难点:正确判断两个量是否成正比例的关系,找出等量关系式并列出含有未知数的等式。

五、教学过程 〈一〉复习铺垫

1.下面各题中两种量成什么比例?说明理由。(1)单价一定,买水果的总价和和数量。(2)从甲地到乙地,行驶的速度和时间。(3)平行四边形的高一定,面积和它的底。(4)铺地的面积一定,每块砖的面积和块数。

(5)泾源县城----银川的总路程一定,行了的路程和剩下的路程。2.根据题意用等式表示(1)汽车2小时行驶140千米,照这样的速度,3小时行驶210千米.

(2)汽车从甲

未完,继续阅读 >

《《用正比例解决问题》教学设计.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
《用正比例解决问题》教学设计
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文