八年级数学必做试题和模拟题

2024-01-25 07:13:03 精品范文 下载本文

第1篇:八年级数学必做试题和模拟题

八年级数学必做试题和模拟题

无论是身处学校还是步入社会,我们都不可避免地要接触到试题,试题有助于被考核者了解自己的真实水平。大家知道什么样的试题才是规范的吗?以下是小编帮大家整理的八年级数学必做试题和模拟题,希望对大家有所帮助。

试题和模拟题1:

一、选择题(共8道小题,每小题3分,共24分)

1. 9的平方根是( )

A.3 B.3 C.81 D.81

2.下列各图形中不是中心对称图形的是( )

A.等边三角形 B.平行四边形 C.矩形 D.正方形

3.点P(-1,2)关于y轴对称点的坐标是( )

A.(1,-2) B.(-1,-2) C.(2,-1) D.(1, 2)

4.如果一个多边形的内角和是它的外角和的 倍,那么这个多边形的边数是( )

A. 3 B. 4 C. 5 D. 6

5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是 , ,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是 ( )

A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比

6.如图,在矩形 中,对角线 , 相交于点 ,如果 , ,那么 的长为( )

A. B.

C. D.

7.若关于x的方程 的一个根是0,则m的值为( )

A.6 B.3 C.2 D.1

8.如图1,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B-A-D-C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )

A.点C B.点O C.点E D.点F

二、填空题(共6道小题,每小题4分,共24分)

9.如图,平行四边形ABCD中,E是边AB的中点,

F是对角线BD的中点,若EF=3,则BC .

10.若关于x的方程 有两个相等的实数根,则 = .

11.请写出一个经过第一、二、三象限,并且与y轴交于点(0,1)的直线解析式 _______.

12.将一元二次方程 用配方法化成 的形式,则 = , = .

13.如图,菱形ABCD中, ,CFAD于点E,

且BC=CF,连接BF交对角线AC于点M,则FMC= 度.

14.如图,在平面直角坐标系xOy中,有一边长为1的

正方形OABC,点B在x轴的正半轴上,如果以对

角线OB为边作第二个正方形OBB1C1,再以对角线

OB1为边作第三个正方形OB1 B2C2,,照此规律

作下去,则B2的坐标是

B2014的坐标是 .

三、解答题(共13道小题,共72分)

15.(5分)计算: .

16.(5分)如图,C是线段AB的中点,CD∥BE,且CD=BE,

求证:AD=CE.

17. (5分)解方程: .

18.(5分)如图,正方形ABCD中,E,F分别为边AD,BC上一点,且2.

求证:四边形BFDE是平行四边形.

19. (5分)如图,在平面直角坐标系xOy中,一次函数 的图象与x轴交于点

A(1,0),与y轴交于点B(0,2),求一次函数 的解析式及线段AB的长.

20.(6分)某路段的雷达测速器对一段时间内通过的汽车进行测速,将监测到的数据加以整理,得到下面不完整的图表:

时速段频数频率

30~40100.05

40~50360.18

50~600.39

60~70

70~80200.10

总 计2001

注:30~40为时速大于或等于30千米且小于40千米,其它类同.

(1) 请你把表中的数据填写完整;

(2) 补全频数分布直方图;

(3) 如果此路段汽车时速达到或超过60千米即为违章,那么违章车辆共有多少辆?

21.(6分)如图,平行四边形ABCD的边CD的垂直平分线与边DA,BC的延长线分别交于点E,F,与边CD交于点O,连结CE,DF.

(1)求证:DE=CF;

(2)请判断四边形ECFD的形状,并证明你的结论.

22. (5分)某村计划建造了如图所示的矩形蔬菜温室,温室的长是宽的4倍,左侧是3米宽的空地,其它三侧各有1米宽的通道,矩形蔬菜种植区域的面积为288平方米.求温室的长与宽各为多少米?

23. (6分)已知关于x的一元二次方程 ( ).

(1)求证:方程总有两个实数根;

(2)如果m为正整数,且方程的两个根均为整数,求m的值.

24. (6分)在平面直角坐标系系xOy中,直线 与 轴交于点A,与直线 交于点 ,P为直线 上一点.

(1)求m,n的值;

(2)当线段AP最短时,求点P的坐标.

25.(6分)如图,在菱形ABCD中, ,过点A作AECD于点E,交对角线BD于点F,过点F作FGAD于点G.

(1)求证:BF= AE +FG;

(2)若AB=2,求四边形ABFG的面积.

26.(6分)甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.

(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒;

(2)求乙跑步的速度及乙在途中等候甲的时间;

(3)求乙出发多长时间第一次与甲相遇?

27.(6分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作CPD=APB,交x轴于点D,交y轴于点E,过点E作EF//AP交x轴于点F.

(1)若△APD为等腰直角三角形,求点P的坐标;

(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.

参考答案

一、选择题(共10道小题,每小题3分,共30分)

题号12345678

答案BA DDA CBB

二、填空题(共6道小题,每小题4分,共24分)

9.6; 10.2或-2; 11. ;(答案不唯一) 12.1,5;

13.105; 14. , .(每空给2分)

三、解答题(共12道小题,共66分)

15.(5分)

解:

1分

2分

3分

4分

5分

16.(5分)

证明:∵CD∥BE,

. 1分

∵C是线段AB的中点,

AC=CB. 2分

又∵ ,3分

△ACD≌△CBE. 4分

AD=CE. 5分

17. (5分)

法一: 1分

2分

3分

4分

.5分

法二: ,

,1分

2分

4分

.5分

18.(5分)

法一:证明:∵ 四边形ABCD是正方形,

AD∥BC,DE∥BF, 2分

2,

又∵2,

1, 3分

BE∥DF, 4分

四边形BFDE是平行四边形. 5分

法二:证明:∵ 四边形ABCD是正方形,

AB=CD=AD=BC, , 2分

又∵2,

△ABE≌△CDF, 3分

AE=CF,BE=DF, 4分

DE=BF,

四边形BFDE是平行四边形. 5分

19. (5分)

解: 由题意可知,点A ,B 在直线 上,

1分

解得 3分

直线的解析式为 . 4分

∵OA=1,OB=2, ,

. 5分

20. (6分)

时速段频数频率

30~40100.05

40~50360.18

50~60780.39

60~70560.28

70~80200.10

总 计2001

解:(1)见表. 3分(每空1分)

(2)见图. 4分

(3)56+20=76

答:违章车辆共有76辆.6分

21.(6分)

(1)证明:∵ 四边形ABCD是平行四边形,

AD∥BC, 1分

EDO=FCO,DEO=CFO,

又∵EF平分CD,

DO=CO,

△EOD≌△FOC, 2分

DE=CF. 3分

(2)结论:四边形ECFD是菱形.

证明:∵EF是CD的垂直平分线,

DE=EC,CF=DF,4分

又∵DE=CF,

DE=EC=CF=DF, 5分

四边形ABCD是菱形. 6分

22. (5分)

解:温室的宽是x米,则温室的长是4x米, 1分

得 . 3分

整理,得 ,

解得 , (不合题意舍去). 4分

则4x=40.

答:温室的长为40米,宽为10米. 5分

23. (6分)

(1)证明: ,1分

∵ ,

方程一定有实数根. 3分

(2)解:∵ ,

, . 5分

∵方程的两个根均为整数,且m为正整数,

m为1或3. 6分

24. (6分)

解:(1)∵点 在直线上 ,

n=1, , 2分

∵点 在直线上 上,

m=-5. 3分

(2)过点A作直线 的垂线,垂足为P,

此时线段AP最短.

∵直线 与 轴交点 ,直线 与 轴交点 ,

AN=9, ,

AM=PM= , 4分

OM= , 5分

. 6分

25. (6分)

(1)证明: 连结AC,交BD于点O.

∵ 四边形ABCD是菱形,

AB= AD, ,4= , , ACBD ,

∵ ,

4= ,

又∵AECD于点E,

1=30,

4,AOB=DEA=90,

△ABO≌△DAE, 1分

AE=BO.

又∵FGAD于点G,

AOF=AGF=90,

又∵3,AF= AF,

△AOF≌△AGF, 2分

FG=FO.

BF= AE +FG.3分

(2)解:∵2=30,

AF=DF.

又∵FGAD于点G,

∵AB=2,

AD=2,AG=1.

DG=1,AO=1,FG= ,BD= ,

△ABD的面积是 ,RT△DFG的面积是 5分(两个面积各1分)

四边形ABFG的面积是 .6分

(注:其它证法请对应给分)

26. (6分)

解:(1)900,1.5.2分(每空各1分)

(2)过B作BEx轴于E.

甲跑500秒的路程是5001.5=750米,

甲跑600米的时间是(750-150)1.5=400秒,

乙跑步的速度是750(400-100)=2.5米/秒,

3分

乙在途中等候甲的时间是500-400=100秒.

4分

(3)

∵ , , ,

OD的函数关系式是 ,AB的函数关系式是 ,

根据题意得

解得 ,5分

乙出发150秒时第一次与甲相遇.6分

(注:其它解法、说法合理均给分)

27. (6分)解:

(1)∵△APD为等腰直角三角形,

.

又∵ 四边形ABCD是矩形,

OA∥BC , ,AB=OC,

.

AB=BP,1分

又∵OA=3,OC=2,

BP=2,CP=1,

. 2分

(2)∵四边形APFE是平行四边形,

PD=DE,OA∥BC ,

∵CPD=1,

CPD=4,3,

4,

PD=PA,

过P作PMx轴于M,

DM=MA,

又 ∵PDM=EDO, ,

△PDM≌△EDO, 3分

OD=DM =MA=1,EO=PM =2,

, . 5分(每个点坐标各1分)

PE的解析式为 .6分

试题和模拟题2:

一、选择题

1、下列四个说法中,正确的是()

A、一元二次方程有实数根;

B、一元二次方程有实数根;

C、一元二次方程有实数根;

D、一元二次方程x2+4x+5=a(a≥1)有实数根。

【答案】D

2、一元二次方程有两个不相等的实数根,则满足的条件是

A、 =0 B、 >0

C、<0 D、 ≥0

【答案】B

3、(2010四川眉山)已知方程的两个解分别为、,则的值为

A、 B、 C、7 D、3

【答案】D

4、(2010浙江杭州)方程x2 + x – 1 = 0的一个根是

A、 1 – B、 C、 –1+ D、

【答案】D

5、(2010年上海)已知一元二次方程x2 + x ─ 1 = 0,下列判断正确的是()

A、该方程有两个相等的实数根B。该方程有两个不相等的实数根

C、该方程无实数根D。该方程根的情况不确定

【答案】B

6、(2010湖北武汉)若是方程=4的两根,则的值是()

A、8 B、4

C、2 D、0

【答案】D

7、(2010山东潍坊)关于x的一元二次方程x2—6x+2k=0有两个不相等的实数根,则实数k的取值范围是()。

A、k≤ B、k< C、k≥ D、k>

【答案】B

8、(2010云南楚雄)一元二次方程x2—4=0的解是()

A、x1=2,x2=—2 B、x=—2 C、x=2 D、 x1=2,x2=0

【答案】A

9、(2010云南昆明)一元二次方程的两根之积是()

A、—1 B、 —2 C、1 D、2

【答案】B

10、(2010湖北孝感)方程的估计正确的是()

A、 B、

C、 D、

【答案】B

11、(2010广西桂林)一元二次方程的解是()。

A、B、

C、D、

【答案】A

12、(2010黑龙江绥化)方程(x—5)(x—6)=x—5的解是()

A、x=5 B、x=5或x=6 C、x=7 D、x=5或x=7

【答案】D

二、填空题

1、(2010甘肃兰州)已知关于x的一元二次方程有实数根,则m的取值范围是。

【答案】

2、(2010安徽芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=__________。

【答案】—1

3、(2010江苏南通)设x1、x2是一元二次方程x2+4x—3=0的两个根,

2x1(x22+5x2—3)+a =2,则a= ▲ 。

【答案】8

4、(2010四川眉山)一元二次方程的解为___________________。

【答案】

5、(2010江苏无锡)方程的解是▲ 。

【答案】

6、(2010江苏连云港)若关于x的方程x2—mx+3=0有实数根,则m的值可以为___________。(任意给出一个符合条件的值即可)

【答案】

7、(2010湖北荆门)如果方程ax2+2x+1=0有两个不等实数根,则实数a的取值范围是

【答案】a<1且a≠0

8、(2010湖北鄂州)已知α、β是一元二次方程x2—4x—3=0的两实数根,则代数式(α—3)(β—3)= 。

【答案】—6

9、(2010四川绵阳)若实数m满足m2— m + 1 = 0,则m4 + m—4 = 。

【答案】62

10、(2010云南玉溪)一元二次方程x2—5x+6=0的两根分别是x1,x2,则x1+x2等于

A。 5 B。 6 C。 —5 D。 —6

【答案】A

11、(2010四川自贡)关于x的一元二次方程—x2+(2m+1)x+1—m2=0无实数根,则m的取值范围是_______________。

【答案】<—

12、(2010广西钦州市)已知关于x的一元二次方程x2 +kx +1 =0有两个相等的实数根,

则k = ▲ 。

【答案】±2

13、(2010广西柳州)关于x的一元二次方程(x+3)(x—1)=0的根是_____________。

【答案】x=1或x=—3

14、(2010福建南平)写出一个有实数根的一元二次方程___________________。

【答案】答案不唯一,例如:x2—2x+1 =0

15、(2010广西河池)方程的解为。

【答案】

16、(2010湖南娄底)阅读材料:

若一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1、x2,则两根与方程系数之间有如下关系:

x1+x2= —,x1x2=

根据上述材料填空:

已知x1、x2是方程x2+4x+2=0的两个实数根,则+=_________。

【答案】—2

16、(2010广西百色)方程—1的两根之和等于。

【答案】2

第2篇:八年级数学必做试题和模拟题

八年级数学必做试题和模拟题

一、选择题(共8道小题,每小题3分,共24分)

1. 9的平方根是( )

A.3 B.3 C.81 D.81

2.下列各图形中不是中心对称图形的是( )

A.等边三角形 B.平行四边形 C.矩形 D.正方形

3.点P(-1,2)关于y轴对称点的坐标是( )

A.(1,-2) B.(-1,-2) C.(2,-1) D.(1, 2)

4.如果一个多边形的内角和是它的外角和的 倍,那么这个多边形的边数是( )

A. 3 B. 4 C. 5 D. 6

5.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是 , ,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是 ( )

A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定 D.甲、乙稳定性没法对比

6.如图,在矩形 中,对角线 , 相交于点 ,如果 , ,那么 的长为( )

A. B.

C. D.

7.若关于x的方程 的一个根是0,则m的值为( )

A.6 B.3 C.2 D.1

8.如图1,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B-A-D-C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的( )

A.点C B.点O C.点E D.点F

二、填空题(共6道小题,每小题4分,共24分)

9.如图,平行四边形ABCD中,E是边AB的中点,

F是对角线BD的中点,若EF=3,则BC .

10.若关于x的方程 有两个相等的实数根,则 = .

11.请写出一个经过第一、二、三象限,并且与y轴交于点(0,1)的直线解析式 _______.

12.将一元二次方程 用配方法化成 的形式,则 = , = .

13.如图,菱形ABCD中, ,CFAD于点E,

且BC=CF,连接BF交对角线AC于点M,则FMC= 度.

14.如图,在平面直角坐标系xOy中,有一边长为1的

正方形OABC,点B在x轴的正半轴上,如果以对

角线OB为边作第二个正方形OBB1C1,再以对角线

OB1为边作第三个正方形OB1 B2C2,,照此规律

作下去,则B2的坐标是

B2014的坐标是 .

三、解答题(共13道小题,共72分)

15.(5分)计算: .

16.(5分)如图,C是线段AB的中点,CD∥BE,且CD=BE,

求证:AD=CE.

17. (5分)解方程: .

18.(5分)如图,正方形ABCD中,E,F分别为边AD,BC上一点,且2.

求证:四边形BFDE是平行四边形.

19. (5分)如图,在平面直角坐标系xOy中,一次函数 的图象与x轴交于点

A(1,0),与y轴交于点B(0,2),求一次函数 的解析式及线段AB的长.

20.(6分)某路段的雷达测速器对一段时间内通过的汽车进行测速,将监测到的数据加以整理,得到下面不完整的图表:

时速段频数频率

30~40100.05

40~50360.18

50~600.39

60~70

70~80200.10

总 计2001

注:30~40为时速大于或等于30千米且小于40千米,其它类同.

(1) 请你把表中的数据填写完整;

(2) 补全频数分布直方图;

(3) 如果此路段汽车时速达到或超过60千米即为违章,那么违章车辆共有多少辆?

21.(6分)如图,平行四边形ABCD的边CD的垂直平分线与边DA,BC的延长线分别交于点E,F,与边CD交于点O,连结CE,DF.

(1)求证:DE=CF;

(2)请判断四边形ECFD的形状,并证明你的结论.

22. (5分)某村计划建造了如图所示的矩形蔬菜温室,温室的长是宽的4倍,左侧是3米宽的空地,其它三侧各有1米宽的通道,矩形蔬菜种植区域的面积为288平方米.求温室的长与宽各为多少米?

23. (6分)已知关于x的.一元二次方程 ( ).

(1)求证:方程总有两个实数根;

(2)如果m为正整数,且方程的两个根均为整数,求m的值.

24. (6分)在平面直角坐标系系xOy中,直线 与 轴交于点A,与直线 交于点 ,P为直线 上一点.

(1)求m,n的值;

(2)当线段AP最短时,求点P的坐标.

25.(6分)如图,在菱形ABCD中, ,过点A作AECD于点E,交对角线BD于点F,过点F作FGAD于点G.

(1)求证:BF= AE +FG;

(2)若AB=2,求四边形ABFG的面积.

26.(6分)甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.

(1)在跑步的全过程中,甲共跑了 米,甲的速度为 米/秒;

(2)求乙跑步的速度及乙在途中等候甲的时间;

(3)求乙出发多长时间第一次与甲相遇?

27.(6分)如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作CPD=APB,交x轴于点D,交y轴于点E,过点E作EF//AP交x轴于点F.

(1)若△APD为等腰直角三角形,求点P的坐标;

(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.

参考答案

一、选择题(共10道小题,每小题3分,共30分)

题号12345678

答案BA DDA CBB

二、填空题(共6道小题,每小题4分,共24分)

9.6; 10.2或-2; 11. ;(答案不唯一) 12.1,5;

13.105; 14. , .(每空给2分)

三、解答题(共12道小题,共66分)

15.(5分)

解:

1分

2分

3分

4分

5分

16.(5分)

证明:∵CD∥BE,

. 1分

∵C是线段AB的中点,

AC=CB. 2分

又∵ ,3分

△ACD≌△CBE. 4分

AD=CE. 5分

17. (5分)

法一: 1分

2分

3分

4分

.5分

法二: ,

,1分

2分

4分

.5分

18.(5分)

法一:证明:∵ 四边形ABCD是正方形,

AD∥BC,DE∥BF, 2分

2,

又∵2,

1, 3分

BE∥DF, 4分

四边形BFDE是平行四边形. 5分

法二:证明:∵ 四边形ABCD是正方形,

AB=CD=AD=BC, , 2分

又∵2,

△ABE≌△CDF, 3分

AE=CF,BE=DF, 4分

DE=BF,

四边形BFDE是平行四边形. 5分

19. (5分)

解: 由题意可知,点A ,B 在直线 上,

1分

解得 3分

直线的解析式为 . 4分

∵OA=1,OB=2, ,

. 5分

20. (6分)

时速段频数频率

30~40100.05

40~50360.18

50~60780.39

60~70560.28

70~80200.10

总 计2001

解:(1)见表. 3分(每空1分)

(2)见图. 4分

(3)56+20=76

答:违章车辆共有76辆.6分

21.(6分)

(1)证明:∵ 四边形ABCD是平行四边形,

AD∥BC, 1分

EDO=FCO,DEO=CFO,

又∵EF平分CD,

DO=CO,

△EOD≌△FOC, 2分

DE=CF. 3分

(2)结论:四边形ECFD是菱形.

证明:∵EF是CD的垂直平分线,

DE=EC,CF=DF,4分

又∵DE=CF,

DE=EC=CF=DF, 5分

四边形ABCD是菱形. 6分

22. (5分)

解:温室的宽是x米,则温室的长是4x米, 1分

得 . 3分

整理,得 ,

解得 , (不合题意舍去). 4分

则4x=40.

答:温室的长为40米,宽为10米. 5分

23. (6分)

(1)证明: ,1分

∵ ,

方程一定有实数根. 3分

(2)解:∵ ,

, . 5分

∵方程的两个根均为整数,且m为正整数,

m为1或3. 6分

24. (6分)

解:(1)∵点 在直线上 ,

n=1, , 2分

∵点 在直线上 上,

m=-5. 3分

(2)过点A作直线 的垂线,垂足为P,

此时线段AP最短.

∵直线 与 轴交点 ,直线 与 轴交点 ,

AN=9, ,

AM=PM= , 4分

OM= , 5分

. 6分

25. (6分)

(1)证明: 连结AC,交BD于点O.

∵ 四边形ABCD是菱形,

AB= AD, ,4= , , ACBD ,

∵ ,

4= ,

又∵AECD于点E,

1=30,

4,AOB=DEA=90,

△ABO≌△DAE, 1分

AE=BO.

又∵FGAD于点G,

AOF=AGF=90,

又∵3,AF= AF,

△AOF≌△AGF, 2分

FG=FO.

BF= AE +FG.3分

(2)解:∵2=30,

AF=DF.

又∵FGAD于点G,

∵AB=2,

AD=2,AG=1.

DG=1,AO=1,FG= ,BD= ,

△ABD的面积是 ,RT△DFG的面积是 5分(两个面积各1分)

四边形ABFG的面积是 .6分

(注:其它证法请对应给分)

26. (6分)

解:(1)900,1.5.2分(每空各1分)

(2)过B作BEx轴于E.

甲跑500秒的路程是5001.5=750米,

甲跑600米的时间是(750-150)1.5=400秒,

乙跑步的速度是750(400-100)=2.5米/秒,

3分

乙在途中等候甲的时间是500-400=100秒.

4分

(3)

∵ , , ,

OD的函数关系式是 ,AB的函数关系式是 ,

根据题意得

解得 ,5分

乙出发150秒时第一次与甲相遇.6分

(注:其它解法、说法合理均给分)

27. (6分)解:

(1)∵△APD为等腰直角三角形,

.

又∵ 四边形ABCD是矩形,

OA∥BC , ,AB=OC,

.

AB=BP,1分

又∵OA=3,OC=2,

BP=2,CP=1,

. 2分

(2)∵四边形APFE是平行四边形,

PD=DE,OA∥BC ,

∵CPD=1,

CPD=4,3,

4,

PD=PA,

过P作PMx轴于M,

DM=MA,

又 ∵PDM=EDO, ,

△PDM≌△EDO, 3分

OD=DM =MA=1,EO=PM =2,

, . 5分(每个点坐标各1分)

PE的解析式为 .6分

第3篇:小升初数学模拟题试题

小升初数学模拟题试题

一、填空题。

1.把下面的“成数”改写成百分数。

五成( )、七成( )、三成五( )、十成( )

2.把下面的百分数改写成“成数”

30%( )45%( )10%( ) 95%( )

3.利息=( )×( )×( )

4.30千克是50千克的( %),50千克是30千克的( %)

5.5吨比8吨少( %),8吨比5吨多( %)。

6.540米是( )米的20%。

7.( )公顷的25%是20公顷。

二、判断题。(对的画“√”,错的画“×”)

1.利息和本金的比率叫利率。 ( )

2.一块地的产量,今年比去年增长二成五,就是增长十分之二点五。 ( )

3.一种药水,水和药的比是1∶20,水占药水的5%。 ( )

( )

三、选择题。(把正确答案的'序号填在括号里)

1.半成改写成百分数是 ( )

A.50%

B.0.5%

C.5%

2.一块地原产小麦25吨,去年因水灾减产二成,今年又增产二成。这样今年产量和原产量比 ( )

A.增加了

B.减少了

C.没变

3.小英把 1000元按年利率2.45%存入银行。两年后计算

未完,继续阅读 >

第4篇:初中一年级下学期数学期中必做试题

初中一年级下学期数学期中必做试题

这一学期的努力成果就看期中考试的成绩了,因此,我们一定要重视。在期中考试来临之际,各位初一的同学们,下文为大家整理了初中一年级下学期数学期中必做试题,希望可以对各位考生有所帮助!

一:选择题(每小题2分,共20分)

1.下列计算正确的是(▲)

A.B.C.D.

2.下列四个图中,∠1和∠2是对顶角的图的个数是(▲)

3、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的.质量x(kg)

之间有下面的关系:

x/kg012345

y/cm1010.51111.51212.5

下列说法不正确的是(▲)

A.x与y都是变量,且x是自变量,y是因变量

B.弹簧不挂重物时的长度为0cm

C.物体质量每增加1kg,弹簧长度增加0.5cm

D.所挂物体质量为7kg时,弹簧长度为13.5cm

4.下列算式能用平方差公式计算的是(▲)

A.(2a+b)(2b-a)B.

C.(3x-y)(-3x+y)D.(-a-b)(-a+b)

5.用科学记数法表示为(▲)

A.B.C.D.

6.若多项式+16是完全平

未完,继续阅读 >

第5篇:物理复习必做试题

物理复习必做试题

一、填空题

1.(,合肥模拟)小红在池塘边观察水中月亮的视线与水面的夹角是30°,如图,此光的反射现象中入射角的度数是__60_°__。

2.(,山西)小宇去参观科技馆,他从不同角度看到科技馆的宣传语“风舞九天,鲲鹏万里”,这是因为光发生了__漫__反射;当他逐渐远离平面镜时,他在平面镜中所成像的大小将__不变__(选填“变大”“不变”或“变小”)。

3.(,呼和浩特)如图所示为水位测量仪的示意图。A点与光屏PQ在同一水平面上,从A点发出的一束与水平面成45°角,方向不变的激光,经水面反射后,在光屏上的B点处形成一个光斑,光斑位置随水位变化而发生变化。

(1)A点与光屏在水中所成的像是__虚__(选填“虚”或“实”)像;

(2)A点与水面相距3 m,则A与它在水中的像A′之间的距离为__6__ m;

(3)若光斑B向右移动了1 m,说明水位__下降__(选填“上升”或“下降”)了__0.5__ m。

二、选择题

4.(,青岛)土星的第六颗卫星简称“土卫六”,它的表面覆盖了厚厚的大气层,地表

未完,继续阅读 >

《八年级数学必做试题和模拟题.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
八年级数学必做试题和模拟题
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文