一次函数应用题含答案

2024-03-15 07:12:47 精品范文 下载本文

第1篇:一次函数应用题含答案

一次函数应用题含答案

一、 方案优化问题

我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.

(1)请填写下表,并求出yA,yB与x之间的函数关系式;

(2)试讨论A、B两村中,哪个村花的运费较少;

(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.

解:(1)yA=-5x+5000(0≤x≤200),

yB=3x+4680(0≤x≤200).

(2)当yA=yB时,-5x+5000=3x+4680,x=40;

当yA>yB时,-5x+5000>3x+4680,x<40;

当yA40.

当x=40时,yA=yB即两村运费相等;

当0≤x<40时,ya>yB即B村运费较少;

当40

(3)由yB≤4830得3x+4680≤4830∴x≤50

设两村的运费之和为y,∴y=yA+yB.

即:y=-2x+9680.

又∵0≤x≤50时,y随x增大而减小,

∴当x=50时,y有最小值,y最小值=9580(元).

答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.

要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.

二、利润最大化问题

某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的.相关信息如下表:

根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:

(1)该店有哪几种进货方案?

(2)该店按哪种方案进货所获利润最大,最大利润是多少?

(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.

解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.

可得,6195≤35x+70(100-x)≤6299.

解得,20■≤x≤23.

∵x为解集内的正整数,∴x=21,22,23.

∴有三种进货方案:

方案一:购进甲种T恤21件,购进乙种T恤79件;

方案二:购进甲种T恤22件,购进乙种T恤78件;

方案三:购进甲种T恤23件,购进乙种T恤77件.

(2)设所获得利润为W元.

W=30x+40(100-x)=-10x+4000.

∵k=-10<0,∴W随x的增大而减小.

∴当x=21时,W=3790.

该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.

(3)购进甲种T恤9件、乙种T恤1件.

要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).

三、行程问题

从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.

(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;

(2)求线段AB、BC所表示的y与x之间的函数关系式;

(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?

解:(1)小明骑车在平路上的速度为:

4.5÷0.3=15,

∴小明骑车在上坡路的速度为:15-5=10,

小明骑车在下坡路的速度为:15+5=20.

∴小明返回的时间为:

(6.5-4.5)÷20+0.3=0.4小时,

∴小明骑车到达乙地的时间为: 0.3+2÷10=0.5.

∴小明途中休息的时间为:

1-0.5-0.4=0.1小时.

故答案为:15,0.1

(2)小明骑车到达乙地的时间为0.5小时,

∴B(0.5,6.5).

小明下坡行驶的时间为:2÷20=0.1,

∴C(0.6,4.5).

设直线AB的解析式为y=k1x+b1,由题意

得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,

∴y=10x+1.5(0.3≤x≤0.5);

设直线BC的解析式为y=k2x+b2,由题意

得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,

∴y=-20x+16.5(0.5

(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意

得10t+1.5=-20(t+0.15)+16.5,

解得:t= 0.4,∴y=10×0.4+1.5=5.5,

∴该地点离甲地5.5km.

要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.

四、分段计费问题

已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.

(1)当x≥50时,求y关于x的函数关系式;

(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;

(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.

解:(1)设y关于x的函数关系式y=kx+b,

∵直线y=kx+b经过点(50,200),(60,260)

∴50k+b=20060k+b=260解得k=6b=-100

∴y关于x的函数关系式是y=6x-100(x≥50);

(2)由可知,当y=620时,x>50

∴6x-100=620,解得x=120.

答:该企业2013年10月份的用水量为120吨.

(3)由题意得6x-100+■(x-80)=600,

化简得x2+40x-14000=0

解得:x1=100,x2=-140(不合题意,舍去).

答:这家企业2014年3月份的用水量是100吨.

要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.

2015年第3期《锐角三角函数》参考答案

1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;

8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1

(2)■(2cos45°-sin60°)+■

=■(2×■-■)+■

=2-■+■=2

9. 解:过点A作直线BC的垂线,垂足为D.

则∠CDA=90°,

∠CAD=60°,∠BAD=30°,CD=240米,

在Rt△ACD中,

tan∠CAD=■,

∴AD=■=■=80■,

在Rt△ABD中,tan∠BAD=■,

∴BD=ADtan30°=80■×■=80,

∴BC=CD-BD=240-80=160.

答:这栋大楼的高为160米.

10.解:在Rt△CDB中,∠C=90°,

BC=■=■=4,

∴tan∠CBD=■.

在Rt△ABC中,∠C=90°,

AB=■=4■,

∴sinA=■.

第2篇:一次函数应用题带答案

一次函数应用题带答案

一、填空(每小题3分,共24分)

1、已知函数 ,则当 时, ____________、

2、若函数 是 的正比例函数,则 =____________、

3、函数 的图像与 轴的交点坐标为____________、

4、一次函数 的图像是由函数 的图像向上平移2个单位而得到的,则该一次函数的解析式为________________________、

5、已知函数 中, 值随 的增加而减小 ,则 的取值范围为___________、

6、已知一次函数的图像与坐标轴的交点为 、则一次函数的解析式为________________________、

7、已知点P既在直线 上,又在直线 上,则P点的'坐标为____________、

8、若一次函数的图像经过 ,且 随 的增加而减小,请你写一个符合上述条件的函数解析式:__________________________________、

二、选择题(每小题3分,共30分)

1、一次函数 的图像一定经过点( )

A、(2,—5) B、(1,0) C、(—2,3) D、(0,—1)

2、函数 中自变量 的取值范围( )

A、 B、 C、 D、

3、已知函数 ,当 时, 值相等,那么 的值是( )

A、1 B、2 C、3 D、4

4、一次函数 的图像与两坐标轴所围成的三角形面积为( )

A、6 B、3 C、9 D、4、5

5、当 时,函数 的图像大致是( )

6、把函数 的图像沿着 轴向下平移一个单位,得到的函数关系式是( )

A、 B、 C、 D、

7、已知点A 和点B 都在直线 上,则 与 的大小关系为( )

A、 B、 C、 D、不能确定

8、邮购一种图书,每册定价20元,另加书价的5%作邮资,购书 册,需付款y(元)与 的函数解析式为( )

A、 B、

C、 D、

9、如所示, 分别表示甲乙两名运动员在自行车比赛中所走的路程S和时间t的函数关系,则他们的速度关系是( )

A、甲比乙快 B、乙比甲快

C、甲乙同速 D、不能确定

10、在 中,当 时,y=—1,则当 时,y=( )

A、—2 B、 C、 D、2

三、解答题(每小题8分,共24分)

1、拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:

(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;

(2)当工作5小时时油箱的余油量

2、已知一次函数 ,求:

(1)m为何值时,函数图像交y轴于正半轴?

(2)m为何值时,函数图像与y轴的交点在 轴的下方?

(3)m为何值时,图像经过原点?

3、用图像法求下面一元二次方程组的近似解

第3篇:一次函数应用题及答案

一次函数应用题及答案

导语:一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx(k为常数,k≠0),y叫做x的正比例函数(direct proportion function)。以下是小编整理一次函数应用题及答案的资料,欢迎阅读参考。

有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推。最后发现这堆桃子正好分完,且每只猴子分得的'桃子同样多。那么这群猴子有多少只?

方法一:

方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子

剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。

所以a+4=b+8,即b=a-4个。那么就有9a=10(a-4)+8。

解得a=32。所以桃子有32×10+4=324个。

每只猴子分得32+4=36个,所以猴子有324÷36=9只。

未完,继续阅读 >

第4篇:一次函数的应用题集

一次函数的应用题集

1.(10分)(2013•内江)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.

(1)求y关于x的函数解析式;

(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

2.(2013广东湛江,25,10分)周末,小明骑自行车从家里出发到野外郊游,从家出发1小时后后达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同的路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.

(1)求小明骑车的速度和在南业所游玩的时间;

(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.

3.(10分)(2013•荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买

未完,继续阅读 >

《一次函数应用题含答案.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
一次函数应用题含答案
点击下载文档
相关专题
[精品范文]相关推荐
[精品范文]热门文章
下载全文