构造函数,利用导数证明不等式_利用导数证明不等式

2020-02-27 证明 下载本文

构造函数,利用导数证明不等式由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“利用导数证明不等式”。

构造函数,利用导数证明不等式

湖北省天门中学薛德斌2010年10月

1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).

2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.

求证:(1)f(0)f(2)2f(1);(2)f(2)2f(1).

3、已知m、nN,且mn,求证:(1m)(1n).

nm

4、(2010年辽宁卷文科)已知函数f(x)(a1)lnxax21,其中a2,证明: x1,x2(0,),|f(x1)f(x2)|4|x1x2|.例

5、(2010年全国Ⅱ卷理科)设函数fxxaIn1x有两个极值点x1、x2,且

2x1x2,证明:fx2

12In2.4a0,b0,例

6、已知函数f(x)xlnx,求证:f(a)(ab)ln2f(ab)f(b).xln(1x)x; 1x

11112ncln(2)设c0,求证:.2cn1cn2c2ncnc例

7、(1)已知x0,求证:

构造函数,结合导数证明不等式

构造函数,结合导数证明不等式摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘隐......

利用导数证明不等式

利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个......

利用导数证明不等式

利用导数证明不等式例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0,要证不等式变为:x>0时,f(x)>f(0), 这只要证明:f(x)在区间[0,)是增函数。证明:令:f(x)=x-lnx,容......

构造函数证明不等式

在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化......

构造函数证明不等式

构造函数证明不等式构造函数证明:>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有:ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)不等式左边=2ln2-l......

《构造函数,利用导数证明不等式.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
构造函数,利用导数证明不等式
点击下载文档
相关专题 利用导数证明不等式 证明 导数 不等式 利用导数证明不等式 证明 导数 不等式
[证明]相关推荐
[证明]热门文章
下载全文