解决问题的策略—假设法_假设法解决问题的策略

2020-02-29 其他范文 下载本文

解决问题的策略—假设法由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“假设法解决问题的策略”。

解决问题的策略》教材解读

解决问题的策略从三年级上册开始教学,有计划地在每册教科书里编排一个单元的内容,集中教学一个(种)策略。到现在为止,已经进行了四个学期,依次教学了从条件向问题的推理、从问题向条件的推理、列表整理条件、画图整理信息等策略。条件与问题之间的推理是研究实际问题数量关系最常用的方法,列表整理已知与未知数据以及画图整理条件与问题信息,能够帮助人们理解题意,促进分析数量关系的活动顺利展开。可以说,三、四年级教学的策略是最基本的策略,可以用来解答常见的、比较容易的实际问题,而且十分有效。不过,日常生活和生产劳动中,往往会遇到一些仅仅依靠数量关系的推理还难以解决的问题,甚至有些问题还不宜列式计算,因此需要进一步教学解决问题的策略。从五年级上册的本单元起,将陆续教学枚举、转化、假设与调整等策略,将解答一批过去大纲教科书里没有编排的问题。这些策略的教学,将使学生获得更多的解决问题的方法,积累解决问题的经验,形成个体解决问题的能力。

教学五、六年级教科书里的解决问题的策略,往往要解答稍复杂的、较特殊的,甚至有点超“常规”的问题。教学解决问题的策略,假如解答的问题过于简单,学生不需要多少思考,思维负担过轻会使解题策略显得苍白无力,以致体会不到策略及其价值。当然,教学的例题和习题过难,学习负担会相应加重,这也不好。我们必须清楚认识到,那些较难的问题是教学策略的载体,策略教学正是通过这些题的解答,让学生感悟策略、学习策略,初步具有一些比较基础的策略。对那些较难的题目,没有必要进行大量的强化练习,不要求学生认识并记住这些题的特点与解法。

本单元教学用枚举的方法解决实际问题。所谓枚举就是一一列举,即把事情发生的各种可能逐个罗列,并用某种形式进行整理,由此得到问题的答案。生活中有许多实际问题,列式计算比较困难,如果联系生活经验,用枚举的方法能比较容易地得到解决。因此,枚举是人们解决问题的常用策略之一。而且,枚举时十分讲究有序思考,要做到不重复、不遗漏,对发展思维的条理性和严密性很有帮助。全单元编排两道例题,具体安排见下表:

例1在表格里有序地一一列举,初步体会列举策略

例2有意识地使用列举策略解决问题,鼓励列举形式活泼多样

(一)引发列举活动,初步体验列举策略解决问题的策略表现在具体的解题活动中,要通过充分的解题活动才能逐渐形成。例1作为本单元教学的起始,让学生初步体会列举是解决问题的一种有效方法。设计的教学线索包括“理解题意、构思解法——填表列举、找到答案——回顾过程、体会方法——联系过去、感悟策略”等几个主要环节。

1.利用现实的问题情境引发列举活动。例题用22根栅栏围一个长方形花圃,由于每根栅栏的长都是1米,所以围成的长方形花圃的长和宽都是整米数。配置的王大伯围花圃的情境图,帮助学生理解栅栏的总数22米(即长方形的周长)是确定不变的,围成的长方形的长和宽的数量是可变的,也就是围法多样。接着进一步想到,长方形的宽可以是1米、2米、3米……每一个宽都有相应的长,每种围法都有其面积。于是产生摆小棒解决问题的动机,逐步形成根据长与宽的和是11米,依次找到各个长方形的思路。无论哪一种思考,都是初步的列举。教学这个环节要抓住“怎样围面积最大”帮助学生明白花圃有多种围法,并在交流中体会各种围法可以按宽的米数从小到大有序地列举出来(当然也可以按长的米数从大到小有序列举),只要算出各种围法的面积,就能比出面积最大的围法。

2.填表列举,加强数学思维。学生在自主进行的列举活动中会感到,列举不能有遗漏,也不能有重复,应该有序地进行。如果把各种围法的长、宽以及面积等数量分别记录下来,就能方便地比出面积最大的围法。于是产生优化列举活动的愿望,这就是填表列举的思想基础。教材为学生提供了列举的表格,而且按长从大到小、宽从小到大的次序,及时算出各种围法的面积。正确列举的关键在于“长方形长与宽的和是11米”,把握住这个关系,才能找到对应的长与宽,也才能算出相应的面积。所以,例题在列举之前,先计算长方形长与宽的和“22÷2=11(米)”,为正确列举作准备。填表列举以后,教材提醒学生检查自己的列举有没有遗漏或重复,进一步体会“有序”列举的重要性。教学应该引导学生注意列举从哪里开始,按怎样的次序进行,感受这里“从大到小”“从小到大”列举的好处。教学还要引导学生注意列举到哪里结束,这里只要找到“长6米”“宽5米”就够了,如果再列举下去就重复了。从摆小棒列举到填表列举,动手的成分少了,动脑的成分多了。从没有表格的列举到填表列举,有序性加强了。这个环节的教学要处理好摆小棒到填表的过渡,从无序列举到有序列举的改进,激发并利用学生的优化愿望,提升数学思考的水平。

3.回顾列举过程,反思相关活动。例1的教学不能满足于获得问题的答案,还要继续提炼解决问题的策略。教材要求学生说说自己的体会,引导他们回顾解决问题的过程与做法,感悟其中的数学思想和数学方法。这是例题不可缺少的教学环节,也是学生把自己的学习活动作为认识对象的元认知活动。如果不经历这个环节,不反省自己的学习活动,就很难形成解决问题的策略。这里的回顾与反思,可以先是相当具体的,包括怎样想、怎样算的,采用了什么形式,进行了哪些活动,小棒是怎样有条理地摆的,表格是怎样有序地填的……然后比较概括地理解自己所开展的活动是一一列举,这是解决问题的有效方法,并深刻体会“有序”“不重复”“不遗漏”都是列举的要领。

4.回忆曾经进行过的列举,丰富对列举活动的感受。对个体来说,策略不是无本之木、无源之水,更不是天降之物,总要在自己已有的经验上萌发。可以说,已有的经验越是丰富,形成的策略越是厚实。列举策略虽然在本单元内教学,但学生早就进行过许多类似的活动,尽管那时他们还不知道“列举”这个词语,还不意识自己在一一列举。例题要求学生回顾曾经运用列举策略解决过的问题,使他们对列举策略有更多的体验,有更深的感情。应该说学生曾经进行过许多列举活动,教科书里几个小卡通的交流仅是其中的一小部分。10的分与合是一年级教学的,3张数字卡片排出三位数是二年级教学的,12个相同的正方形拼成长方形是三年级教学的。教材希望这些例子引起对以往数学学习的回忆,让学生说出更多应用列举方法解决问题的实例,从大量的实例中体会列举有利于解决问题,是解决问题的常用策略。

(二)主动应用列举策略,灵活开展列举活动,进一步体验列举的方法列举作为一种策略,在解决问题时的具体应用,不仅是表格列举,而且还应是灵活多样的。在学生初步学会表格列举以后,引导他们学习一些其他的列举形式,能使列举活动更加方便、更加有效。学生掌握列举策略通常表现为:联系实例知道什么是列举,会主动采用列举的方法解决具体的问题,并且具有一些列举的技巧。他们在例1里初步认识了列举,在例2里将要主动利用列举解决新的问题,体验列举的作用与价值,积累更多列举的经验。教材为例2预设的教学线索是:创设需要列举的问题情境——学生自主选择列举形式开展列举活动——交流各人的列举形式、过程、结果和经验。

1.由实际问题引发列举活动。列举是解决问题的一种策略,应该由实际问题引发出来。例2的情境里有4支足球队,每两队比赛一场,求一共要比赛多少场。学生会对这个问题产生兴趣,并且能主动选择列举策略解决它。他们选择列举一般有两个原因:一是例1学习的影响。之前已经用列举的方法解答了例1和“练一练”里的两个问题,这些列举的心向会影响新问题的解决,从而在新的问题情境里首先想到列举。二是例2的问题情境提供的启示。学生会感到解决这个问题不一定列式计算,“排一排”可能是解决这个问题的方法,从而选择列举策略,尝试开展列举活动。教学时,要通过“读”题和“说”题进入问题情境,弄清楚“每两支球队之间比赛一场”的意思,这是引发列举策略的关键。2.学生自主开展列举活动。在确定采用列举方法解决例2以后,教材鼓励学生自主开展列举活动。例1的列举只要有序地排出长方形花圃长的米数,就能算出宽的米数和面积的平方米数,在表格里进行比较方便。例2的列举稍复杂些,如果仍然在表格里列举,无论是设计表格还是使用表格都不太容易。因此,学生会想出一些别的列举形式。如“萝卜”卡通的“排排——写写”,“番茄”卡通的“连连——数数”等都是学生能够想到和使用的列举方法。除了这些形式,学生中还可能有其他方法,只要能方便地表达“每两支球队之间比赛一场”这个规定,能够清楚地看出一共比赛的场数,都是可以使用的列举形式。列举应该有序地进行,必须做到不重复、不遗漏。所以,“萝卜”卡通先列举红队要进行的比赛,再列举黄队要进行的比赛,然后列举绿队要进行的比赛。采用这种列举形式,应该弄清楚为什么红队列举3场,黄队列举2场,绿队列举1场,蓝队不列举的原因。相应地,“番茄”卡通的列举也应该先表示出红队比赛的场次,再表示出黄队比赛的场次,最后表示出绿队比赛的场次,也应该弄清楚与“萝卜”卡通列举时同样的问题。

3.交流列举的方法和体会。例题鼓励学生自主设计列举活动的形式,课堂教学就有交流的资源。组织学生交流要注意两点:第一,既要交流列举的各种形式,也要体会各种形式的特点,以及哪些形式较为简便。像“萝卜”卡通那样列举,很有条理,不会遗漏或重复。像“番茄”卡通那样列举,比较简便,能够较快地得出答案。第二,要联系例1的列举,注意到解决两道例题所采用的列举形式不同,体会列举的形式应有助于列举活动的开展,也应有利于问题的解决。一定要突出列举必须不遗漏、不重复,否则就不会得到正确的结果。为此,应该讲究列举的“序”,有次序地列举才能不重复、不遗漏。列举得出的结果应该及时检验,这是应有的习惯与态度。检验应着重于列举的方法、过程和结果,看一看列举的方法是不是能够解决问题,查一查列举的过程有没有重复或遗漏,想一想列举的结果是不是符合实际情况。教材编排的习题,题材相当丰富。有数与代数领域的问题,有图形与几何领域的问题,有统计与概率领域的问题。可见,列举策略的应用范围很广,许多问题都可以通过列举得到解决。采用的列举形式多种多样,开展的列举活动生动活泼,能够调动学生解题的积极性。如,例2的“练一练”是人际交往方面的问题,“每两人通一次电话”和“每两人互相寄一张贺卡”是不同的。前者小强和小华两人之间通一次电话就可以了,后者小强要给小华寄一张贺卡、小华也要给小强寄一张贺卡。把通电话和寄贺卡两种交往方式编在一道题里,让学生体会解决相关问题的列举是不同的。再如,练习十七第7题在方格纸上涂出轴对称图形,用画图列举比较合适。学生可以涂出很多个符合要求的图形,在感兴趣的画图活动中,发展想象能力,体会画图也是列举的一种形式。又如,第12题从四张扑克牌中任意选出两张,和例2四个球队每两队之间比赛一场的数学问题是一样的,也可以采用连线列举的形式,得出扑克牌有6种选法。其中选5与8、6与7时,两张扑克牌上点数的和都是13,所以,选法有6种,点数和只有5个,分别是11、12、13、14、15。第14题如果小红出8,小力可能出8、2或5,这就是三种拿法;如果小红出2,小力可能出8、2或5,也是三种拿法;如果小红出5,小力还可能出8、2或5,还有三种拿法。学生会创造出许多种形式来进行这些列举,得出一共有9种拿法。

假设法解决问题

“假设法”的实际应用1、通过复习,使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系,定解题思路,并有效的解决问题。2、使学生在对自己解决实际问题过程的不断......

假设法解决问题教案

假设法解决问题假设法是一种常用的解题方法。“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确......

《解决问题的策略—假设法》的评课稿

刀豆文库小编为你整合推荐5篇《解决问题的策略—假设法》的评课稿,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

《解决问题的策略—假设法》的评课稿

《解决问题的策略—假设法》的评课稿评课是指评者对照课堂教学目标,对教师和学生在课堂教学中的活动以及由此所引起的变化进行价值的判断。以下是小编为大家整理的《解决问题......

用假设法解决问题的策略教学设计

用假设的策略解决问题教学内容:苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。教学目标:1、使学生初步学会用“假设”的策略理解题意、分......

《解决问题的策略—假设法.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
解决问题的策略—假设法
点击下载文档
相关专题 假设法解决问题的策略 解决问题 策略 假设法解决问题的策略 解决问题 策略
[其他范文]相关推荐
[其他范文]热门文章
下载全文