一元一次方程应用题基本类型及解题所需等量关系_一元一次方程等量关系
一元一次方程应用题基本类型及解题所需等量关系由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“一元一次方程等量关系”。
一元一次方程应用题基本类型及解题所需等量关系 第一类、行程问题 基本的数量关系:
(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度
要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:
1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量(3)快行距+慢行距=原距
2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题
⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量(3)快行距-慢行距=原距
3、单人往返
⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变
4、行船问题与飞机飞行问题
(1)顺水(风)速度=静水(风)速度+水流(风)速度(2)逆水(风)速度=静水(风)速度-水流(风)速度(3)水流速度=(顺水速度-逆水速度)÷2 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程
5、考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:
⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒
第二类:工程问题的基本关系:
1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
工作效率工作总量工作时间工作时间工作总量 工作效率
2.经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量. 第二类:商品利润问题(市场经济问题或利润赢亏问题
(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。(2)利润问题常用等量关系:
商品利润=商品售价-商品进价=商品标价×折扣率-商品进价
商品利润商品售价-商品进价商品利润率=商品进价×100%=商品进价×100%(3)商品销售额=商品销售价×商品销售量
商品的销售利润=(销售价-成本价)× 销售量
(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率. 第三类:数字问题
1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.
2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。第四类:和、差、倍、分问题——读题分析法
这类问题主要应搞清各量之间的关系,注意找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套„„”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率„”来体现。
2、多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现。增长量=原有量×增长率 现在量=原有量+增长量 第五类:等积变形问题
等积变形是以形状改变而体积不变为前提。常用等量关系为:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=r2h ②长方体的体积 V=长×宽×高=abc 第六类:储蓄问题
1.顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.2.储蓄问题中的量及其关系为:利息=本金×利率×期数 本息和=本金+利息
利率利息本金×100% 利息税=利息×税率(20%)第七类:配套问题:
这类问题的关键是找对配套的两类物体的数量关系 第八类:劳力调配问题
这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。第九类:比例分配问题
比例分配问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。典型题练习
1、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。⑴ 行人的速度为每秒多少米? ⑵ 这列火车的车长是多少米?
2、在3时和4时之间的哪个时刻,时钟的时针与分针:⑴重合;⑵ 成平角;⑶成直角;
3、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
4、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?
5、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?
6、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是
工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?
7、将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高
8、已知三个连续偶数的和是2004,求这三个偶数各是多少?
9、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
10、某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
11、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。
一、列一元一次方程解应用题的一般步骤: (1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找......
找等量关系列方程,解应用题叶榭学校 孔德希 教学内容:九年义务教育课本小学数学(试用本)五年级第一学期P50 教学目标:1、初步养成审题的习惯,从题目中找清条件。2、初步学会筛选题......
1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇 50a+75......
刀豆文库小编为你整合推荐5篇一元一次方程应用题及答案,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......
一元一次方程应用题及答案一元一次方程应用题:1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与......
