反比例函数教案_反比例函数教案全

2020-02-28 教案模板 下载本文

反比例函数教案由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“反比例函数教案全”。

反比例函数

教学目标:

1.能够写出实际问题中反比例关系的函数解析式,从而解决实际问题。

2.用描点法画出反比例函数的图象,当k0时,双曲线的两支在一、三象限;当k0时,双曲线的两支在二、四象限,双曲线是关于原点的对称图形,这一点在作图时很重要。

3.用一元方程求解反比例函数的解析式,学习中与正比例函数相类比。

4.掌握反比例函数增减性,k0时,y随x的增大而减小,k0时,y随x的增大而增大。

5.熟练反比例函数有关的面积问题。

二.重点、难点

重点:反比例函数的定义、图象性质。

难点:反比例函数增减性的理解。

典型例题:

例1.下列各题中,哪些是反比例函数关系。

(1)三角形的面积S一定时,它的底a与这个底边上的高h的关系;

(2)多边形的内角和与边数的关系;

(3)正三角形的面积与边长之间的关系;

(4)直角三角形中两锐角间的关系;

(5)正多边形每一个中心角的度数与正多边形的边数的关系;

(6)有一个角为30的直角三角形的斜边与一直角边的关系。

解:成反比例关系的是(1)、(5)

点拨:若判断困难时,应一一写出函数关系式来进行求解。

例2.在同一坐标系中,画出

y8x和y2x的图象,并求出交点坐标。

点悟:y8x的图象是双曲线,两支分别在一、三象限,在每一个象限内,y随x的增大而减小。并且每一支都向两方无限接近x、y轴。而y2x的图象是过原点的直线。

解:

x-4-2-4 11 2216 2 4 4 2 yx-2-16

8x12yx22xy14y4y2x

,2

y8x与直线y2x相交于(2,4),(2,4)两点。

双曲线

点拨:本题求解使用了“数形结合”的思想。

例3.当n取什么值时,y(n2n)x2n2n1是反比例函数?它的图象在第几象限内?在每个象限内,y随x增大而增大或是减小?

点悟:根据反比例函数的定义:

yk(k0)2n2n1y(n2n)xx,可知是反比例22函数,必须且只需n2n0且nn11

2ny(n2n)x

解:2n2n02

nn11

2n1是反比例函数,则

n0且n2

n0或n1

即n1

2n

故当n1时,y(n2n)x2n1表示反比例函数

1x

k10

双曲线两支分别在二、四象限内,并且y随x的增大而增大。y

点拨:判断一个函数是否是反比例函数,惟一的标准就是看它是否符合定义。

m22m1yx

例4.若点(3,4)是反比例函数图象上一点,则此函数图象必经过点()

A.(2,6)

C.(4,-3)

B.(2,-6)

D.(3,-4)

(2002年武汉)

点悟:将点(3,4)代入函数式求出m的值。

解:将点(3,4)代入已知反比例函数解析式,得

34m2m1

即m2m112,m2m13 222m22m113112yxxx

将A点坐标代入满足上式,故选A。

点拨:本题中求m2m的值的整体思想是巧妙解题的关键。2y122x2a7a14是反比例函数?求函数解析式?

例5.a取哪些值时,2a3a

解:2a7a141

2解得a132,a25

当a3332a23a2()23()02时,22

当a5时,2a3a25350

y165y22x2a7a14是反比例函数,其解析式为x

当a5时,函数2a3a

点拨:反比例函数可写成ykx,在具体解题时应注意这种表达形式,应特别注意对k0这一条件的讨论。

2mm3y(mm)x

例6.若函数是反比例函数,求其函数解析式。

2

1解:由题意,得

2mm312

mm0

m12,m21

得m0且m1

m2

故所求解析式为y6x16x

点拨:在确定函数解析式时,不仅要对指数进行讨论,而且要注意对x的系数的条件的讨论,二者缺一不可。

2例7.(1)已知yy1y2,而y1与x1成反比例,y2与x成正比例,并且x1时,y2;x0时,y2,求y与x的函数关系式;

(2)直线l:ykxb与y2x平行且过点(3,4),求l的解析式。

解:(1)y1与x1成反比例,y2与x成正比例

y1k12x1,y2k2x

k1k2x2x1

yy1y2

把x1,y2及x0,y2代入

k12k22

得2k10

k12

k21

2yx2x1

(2)ykxb与y2x平行

k2

又ykxb过点(3,4)

3kb4,b2

直线l的解析式为y2x2

点拨:这是一道综合题,应注意综合应用有关知识来解之。

3.kg/m

例8.一定质量的二氧化碳,当它的体积V5m时,它的密度198

3(1)求与V的函数关系式;

(2)求当V9m时二氧化碳的密度。3

解:(1)由物理知识可知,质量m,体积V,密度之间的关系为

mV。由198.kg/m3,V5m3,得

.59.9(kg)

mV198

9.9V

3(2)将V9m代入上式,得

点拨:这是课本上的一道习题,它具有典型性,其意义在于此题与物理知识、化学知识形成了很好的结合,且V的取值可变化。

例9.在以坐标轴为渐近线的双曲线上,有一点P(m,n),它的坐标是方程9.911.(kg/m3)9

t24t20的两个根,求双曲线的函数解析式。

ykx的图象是以坐标轴为渐近线的双曲线。所以,不妨设所

点悟:因为反比例函数求的函数解析式为2ykx。然后把双曲线上一点的坐标代入,即可求出k的值。

解:由方程t4t20解得

t126,t226

P点坐标为(26,26)或(26,26)

设双曲线的函数解析式为

ykx,则

将x26,y26代入

ykx,得k2 kx,得k2

将x26,y26代入

y

故所求函数解析式为

y2x

点拨:只需知道曲线

ykx上一点即可确定k。

例10.如图,RtABC的锐角顶点是直线yxm与双曲线点,且SAOB(1)求m的值

(2)求SABC的值

ymx在第一象限的交

解:(1)设A点坐标为(a,b)(a0,b0)

则OBa,ABb

SAOB1ab32,ab6

ymx上

又A在双曲线

bma,即abm,m6

(2)点A是直线与双曲线的交点

6ba1315a2315ab3151

ba6或b2315

a0,b0

A(315,315)

由直线知C(-6,0)

OC6,OB315,AB315

SABC1(OBOC)AB2

1(3156)(315)12315 

点拨:三角形面积和反比例函数的关系,常用来求某些未知元素(如本例中的m)

模拟试题:

一.选择题

m2m9y(m2)x

1.函数是反比例函数,则m的值是()

2A.m4或m2

B.m4

C.m2

D.m1

2.下列函数中,是反比例函数的是()

A.yx2 B.y12x

C.y11x D.y1x2

3.函数ykx与ykx(k0)的图象的交点个数是()

A.0

B.1

C.2

D.不确定

4.函数ykxb与yk(kb0)x的图象可能是()

A

B

C

D

5.若y与x成正比,y与z的倒数成反比,则z是x的()

A.正比例函数

B.反比例函数

C.二次函数

D.z随x增大而增大

6.下列函数中y既不是x的正比例函数,也不是反比例函数的是()

A.y19x

B.10x:5y

C.y4x

二.填空题

1xy2D.5

7.一般地,函数__________是反比例函数,其图象是__________,当k0时,图象两支在__________象限内。

8.已知反比例函数y2x,当y6时,x_________

a22a

49.反比例函数y(a3)x的函数值为4时,自变量x的值是_________

10.反比例函数的图象过点(-3,5),则它的解析式为_________

11.若函数y4x与

三.解答题 y11x的图象有一个交点是(2,2),则另一个交点坐标是_________

3kyx相交于B、C两点,12.直线ykxb过x轴上的点A(2,0),且与双曲线1已知B点坐标为(2,4),求直线和双曲线的解析式。ykx的图象的一个交点为P(a,b),且P

13.已知一次函数yx2与反比例函数到原点的距离是10,求a、b的值及反比例函数的解析式。

14.已知函数y(m2m)x2m2m12是一次函数,它的图象与反比例函数

ykx的图

1象交于一点,交点的横坐标是3,求反比例函数的解析式。

试题答案:

一.1.B 2.B 3.A

4.A

5.A

6.C 二.7.ykx,k0;双曲线;

二、四

y15x

111.(2,2)

1

8.3 9.1

10.31三.12.由题意知点A(2,0),点B(2,4)在直线ykxb上,由此得

30kb241kb2

k2

b3

1kyx上

点B(2,4)在双曲线4

k12,k2

y2x

双曲线解析式为

13.由题设,得

ba2kba22ab100 

a16a28b18b26

k48,k48

a6,b8或a8,b6

14.由已知条件

2m2m02

mm10 y48x

m0,m2m2或m1

m1使y3x2

代入y2kx

3x2xk0

因图象交于一点,0

即412k0

1y3x

k

反比例函数教案

反比例函数教案(共12篇)由网友“吴情”投稿提供,下面就是小编给大家带来的反比例函数教案,希望大家喜欢阅读!篇1:《反比例函数》教师教案 备课过程,我认真研读教材,认为本节课重点......

反比例函数第一节教案

教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函......

《反比例函数的应用》教案

《3 反比例函数的应用》教案教学目标:1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数......

反比例函数的应用教案

反比例函数的应用教学设计教学目标:1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数......

反比例函数教案(通用18篇)

教案需要根据学生的学习能力和需求进行个性化的调整和修改。在编写教案时,应充分考虑学生的思维方式和认知发展规律,选择适合他们的教学方法。推荐阅读以下教案范文,帮助大家更......

《反比例函数教案.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
反比例函数教案
点击下载文档
相关专题 反比例函数教案全 反比例 教案 函数 反比例函数教案全 反比例 教案 函数
[教案模板]相关推荐
[教案模板]热门文章
下载全文