对数函数教学设计_对数函数的教学设计

2020-02-27 教学设计 下载本文

对数函数教学设计由刀豆文库小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“对数函数的教学设计”。

对数函数教学设计

河北省沙河第二中学 周延杰 ***

一、教材分析

本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.二、学情分析

大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数函与指数函数的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.教具及软件运行环境说明 教具采用多媒体,黑板等形式展开

信息技术设备设置:通过借助计算机多媒体呈现指数函数与对数函数图像 应用环境及软件的说明:软件为在windows下运行的matlab7.0

三、设计思路

学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,利用几何作图软件运行各种指数函数及对数函数,通过比较/类比等方法使学生对对数函数的认识更加深刻。教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.四、教学目标

1、知识与技能,理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能.2、过程与方法,通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一.3、情感态度与价值观,通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的科学意识.五、重点与难点

重点 :(1)对数函数的概念;(2)对数函数的性质.难点 :(1)对数函数与指数函数之间的关系.六、过程设计及师生互动

(一)复习导入

(1)复习提问:什么是指数函数?指数函数的图象和性质如何?

学生回答,并用课件展示 指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理 解新知识清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的 反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

(二)讲授新课(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函

y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数 让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如 何画对数函数的图象呢

让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以 根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我 们利用两种方法画对数函数的图象。

h(x)log2x,f(x)log3x,方法一(描点法)首先列出x,y(q(x)logx,g(x)logx)

1123值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y 然后在坐标系内描点、画出它们的图象.方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x 的图象画出y=log x的图象,再

示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和

性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从 具体到抽象”的方法出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养 学生的创新能力有帮助学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系提高学生对函数思想方法的认识和应用意识。

(三)巩固练习 P42-P45

(四)纳小结强化思想

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从 三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

课后反思:美好的时光总是短暂的请学生总结自己有何收获和体验,并交流。

七、教学评价方案

课堂教学是教学过程的中心环节,是教师和学生进行教学活动的主要形式,为了促进课堂教学改革,提高课堂教学质量,特制定本课堂教学评价方案:(1)、教学目标评价

教师能针对所教内容,结合《课程标准》科学、准确地设计教学目标,做到:、目标明确,符合学生实际。目标的设置不可过高或过低。

2、“三维目标”全面、具体、适度,有可操作性,并能使知识目标,能力目标、情感、态度、价值观目标有机相融,和谐统一。

量化评价标准每项5分,总计10分。(2)、教学内容评价

1、教师能准确把握所教学科内容的重点、难点,教授内容正确。

2、教学内容紧密联系学生的生活实际,激发学生去积极思维。

3、教师能从教学实际出发,转变教材观念,对教材进行科学有效的整合,以促进学生的学习,不唯教材,创新适用教材。

量化评价标准:第1、2项各4分,第3项2分,总计10分。(3)、教师行为评价

1、课堂上教师作为学生学习的组织者,是否能够有效地组织学生进行学习;作为学生学习的指导者,是否对学生的学习指导得有法、到位。培养了学生良好的学习习惯;是否创造了生动有趣的教学情境来诱发学生学习的主动性;作为学生学习的引导着,是否成为学生和课本之间的桥梁纽带,在教学活动中,发挥了自己的聪明才智和应有的作用;作为学生学习的合作者,是否能和学生一起学习,探究、倾听、交流。

2、教师能以学生为主体,重视知识的形成过程,重视学生学习方法的培养,重视学生的自学能力、实践能力,创新能力的发展。

3、课堂上能营造宽松、民主、平等的学习氛围,教态自然亲切,对学生学习的评价、恰当、具体、有激励性。

4、能够根据教材的重点、难点之处,精心设计问题,所提出的问题能针对不同层次的学生,问题的提出,恰到好处。能启发学生思考,促进学生知识的构建,并能给学生留有充分思考的时间,同时注重学生的“问题”意识,引导学生主动提出问题。

5、根据教学内容和学生实际,恰当地选择教学手段,合理运用教学媒体。、课堂上,教师的讲解语言准确简练,示范操作规范,板书合理适用,教学有一定的风格和艺术性。

量化评比标准:第1项8分;第2项5分;第3项2分;第4项4分;第5、6项各3分,总计25分。(4)、学生行为评价

主要针对学生在课上的学习状态来评价。

1、看学生的学习状况,学生学习的主动性是否被激起,能积极地以多种感观参与到学习活动之中,精神振奋,有强烈的求知欲望。

2、看学生的参与状态,学生参与学习活动中的数量、广度和深度是衡量主体地位发挥的主要标志,学生要全员参与,有效参与。

3、看学生的学习方式。是否由被动学习变为主动学习,是否由个体学习到主动合作学习;是否由接受性学习变为探究性学习。

4、看学生在自主、合作、探究学习上的表现。学生在学习过程中,是否全身心地投入、是否发现问题,提出问题,积极解决问题,是否敢于质疑,善于合作、主动探究并有实效,是否围绕某一问题彼此间能交流、讨论、倾听,提出有效建议。

5、看学生学习的体验与收获。学生在学习过程中,90%以上的学生能够相互交流知识、交流、体会,交流情感由自悟——觉悟——感悟——醒悟,在获取丰富知识的同时形成了一定的学习能力。

量化评价评价标准:第1项8分;第2项3分;第3项6分;第4项8分;第5项2分;第6项8分,总计35分。(5)、教学效果评价

1、看教学目标达成度如何,教师是否高度关注学生的知识 与能力、过程与方法、情感态度价值观的全面发展。

2、看教学效果的满意度,学生在教师的指导下,积极主动参与,90%以上的学生掌握了有效的学习方法,获得了知识,发展了能力,有积极的情感体验。

3、看课堂训练题设计,检测效果好。

量化评价标准:第1项4分;第2项7分;第3项4分。总计15分。(6)、教学特色评价

教师在教学方式、方法上,知识的生成点上,教学机智与智慧上的闪光点,有不同寻常之处。

评价标准:具备上述中的某一点或几点评价。

分数:2---5分。

八、教学反思

在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化。注意知识前后的衔接及联系,形成知识框架,其次要了解学生认知规律,知识水平,以便因材施教,再次要处理好课堂教学中教师的教和学生的学的关系。1 要有明确的教学目标 2 要能突出重点、化解难点 3 要善于运用现代化教学手段 4 根据具体内容,选择恰当的教学方法 5 关爱学生,及时鼓励充分发挥学生主体作用,调动学生的学习积极性

对数函数教学设计

《对数函数》教学设计河北定州实验中学 杨丽先一、教材分析本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门.对数函数对于学生来说是一个......

对数函数教学设计

刀豆文库小编为你整合推荐5篇对数函数教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

对数函数的教学设计

刀豆文库小编为你整合推荐4篇对数函数的教学设计,也许这些就是您需要的文章,但愿刀豆文库能带给您一些学习、工作上的帮助。......

对数函数的教学设计

对数函数的教学设计教学目标:1.掌握对数函数的性质,能初步运用性质解决问题.2.运用对数函数的图形和性质.3.培养学生数形结合的思想,以及分析推理的能力.教学重点:对数函数性质的应用.......

对数函数及其性质教学设计

2.2.2对数函数及其性质(一)三维目标一、知识与技能 1.理解对数函数的概念; 2.掌握对数函数的图象与性质.二、过程与方法1.培养学生数学交流能力和与他人合作精神;2.用联系的观点分析......

《对数函数教学设计.docx》
将本文的Word文档下载,方便收藏和打印
推荐度:
对数函数教学设计
点击下载文档
相关专题 对数函数的教学设计 教学设计 对数 函数 对数函数的教学设计 教学设计 对数 函数
[教学设计]相关推荐
[教学设计]热门文章
下载全文